Linked Data Service of GSJ
Geological Literature
Deep Learning-based predicting of future frictional behavior via past physical parameters on experiment fault surface: A Transformer Architecture approach (abs.)
Tae-hoon UHMB, Takehiro Hirose, Yohei Hamada
itemdescription
TitleDeep Learning-based predicting of future frictional behavior via past physical parameters on experiment fault surface: A Transformer Architecture approach (abs.)
AuthorsTae-hoon UHMB, Takehiro Hirose, Yohei Hamada
Data nameAbstracts, the 130th Annual Meeting of the Geological Society of Japan (online)
Volume130
PageT1-O-1
Year2023
PublisherGeological Society of Japan
LanguageEN
ISSN21876665
GEOLIS URLhttps://darc.gsj.jp/archives/detail?cls=geolis&pkey=300038758
DOI10.14863/geosocabst.2023.0_8
@idhttps://gbank.gsj.jp/ld/resource/geolis/300038758