Linked Data Service of GSJ
Geological Literature
Development of a machine learning approach to estimate temperature distribution for evaluating supercritical geothermal resources (B31)(abs.)
ISHITSUKA K., KOBAYASHI Y., MOGI T., UGO T., SUZUKI K., WATANABE N., YAMAYA Y., OKAMOTO K., ASANUMA H., KAJIWARA T., SUGIMOTO T., SAITO R.
itemdescription
TitleDevelopment of a machine learning approach to estimate temperature distribution for evaluating supercritical geothermal resources (B31)(abs.)
AuthorsISHITSUKA K., KOBAYASHI Y., MOGI T., UGO T., SUZUKI K., WATANABE N., YAMAYA Y., OKAMOTO K., ASANUMA H., KAJIWARA T., SUGIMOTO T., SAITO R.
Data nameAnnual Meeting, Geothermal Research Society of Japan, Abstracts with Programs
Volume2019
Page97-97
Year2019
PublisherGeothermal Research Society of Japan
LanguageJA
GEOLIS URLhttps://darc.gsj.jp/archives/detail?cls=geolis&pkey=202070087
@idhttps://gbank.gsj.jp/ld/resource/geolis/202070087