勇払平野と支笏火砕流台地地下の上部第四系層序ボーリング

The boring survey of the upper Quaternary in the Yufutsu Plain and Shikotsu Pyroclastic Flow Upland, central Hokkaido Island, northern Japan

小松原 琢¹·小松原純子¹·田辺 晋¹·本郷美佐緒²·植木岳雪³·中島 礼¹ ·石原武志¹ Taku Komatsubara¹, Junko Komatsubara¹, Susumu Tanabe¹, Misao Hongo²,

Takeyuki Ueki¹, Rei Nakashima¹, Takeshi Ishihara¹

1 地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation) 2 有限会社 アルプス調査所(Alps Technical Research Laboratory Co.,Ltd.)

3 千葉科学大学 (Chiba Institute of Science)

Abstract: To make clear the subsurface stratigraphy, we took three all-core borings (BT1;80m, YF1;80m and CT1;39m) in the Yufutsu Plain and Shikotsu Pyroclastic Flow Upland. All cores mainly consist of alternation of 2-20m-thick units of fine-grained sand to mud including trace fossils and shell fragments (suggesting inner-bay environment), well-sorted granule to pebble (gravel beach) and poorly- sorted gravel (river environment). Pollen, diatom, and shell assemblages in three cores were analyzed for reconstruction of paleo-environment. The BT1 core was extracted on the the axis of the Yufutsu Anticline, and the YF1 core was extracted on the western limb of anticline, they are arranged 4.25km apart along the Yuhutsu coast. The CT1 core is located on the Shikotsu Pyroclastic Flow Upland where no stratigraphic survey had been done. A unit abundant in *Fagus* pollen in the BT1 core is correlated to the Marine Isotope Stage (MIS) 11. This horizon is widely traceable in the hilly lands around the Yufutsu Plain. A shallow marine unit that yields cool temperate pollen assemblages is correlated to the MIS 7, and is traceable below the Yufutsu Plain and the Shikotsu Pyroclastic Flow Upland. The CT1 core is composed of MIS 7 marine deposits, MIS 6 gravel, MIS 5 marine deposits and pyroclastics. The MIS 7 marine deposits in the CT1 core contain two unidentified tephra layers. They would be traceable in the north of the Shikotsu Pyroclastic Flow Upland.

Keywords: Ishikari lowland, Yufutsu plain, boring survey, stratigraphy, Pleistocene

要 旨

勇払平野と支笏火砕流台地の地下地質層序を確立 するために3本のオールコアボーリング(BT1;80m, YF1;80m, CT1;39m)を実施した. すべてのコアは 2~20m厚の,生痕化石と貝殻片を含む細粒の砂及び 泥層(内湾的環境を示唆する),淘汰の良い細礫~中礫 (礫浜)とあまり淘汰の良くない礫(河川環境)の互層 を主体としている.花粉,珪藻,貝化石群集を古環境 復元のために分析した.BT1コアは勇払背斜の軸上で, YF1コアはその西翼で採取された.両者は勇払海岸に 沿って4.25km離れた場所で掘削された.CT1は既往 層序ボーリングのない支笏火砕流台地上に位置してい る.BT1は10の層相ユニットに分けられる.Fagusの 花粉を多量に含むBT1の1つのユニットはMIS11に 対比される.この層準は勇払平野周辺の丘陵に広く追 跡されている.冷涼な気候の花粉を産する浅海成の1 ユニットは MIS 7 に対比され,勇払平野と支笏火砕流 台地の地下に広く追跡できる. CT1 は MIS 7 の海成層, MIS 6 の礫層, MIS 5 の海成層及び火山砕屑物からな る. MIS 7 の海成層には 2 層の未同定テフラが含まれ る. これらは支笏火砕流台地以北まで追跡できる可能 性をもつ.

1. ボーリング調査の概要

勇払平野と支笏火砕流台地は石狩低地東縁断層帯の 南西側に位置する(第1図).この断層帯の西側及び 南側には伏在活褶曲が存在すると考えられてきた(平 川・越後,2002;佐藤ほか,1998など)が,それらの 平均変位速度や連続性については明らかにされていな い.また,支笏火砕流台地の地下地質については層序 ボーリングがなされてこなかったため,基本的な層序 の知見が得られていなかった.そこで,勇払平野から 支笏火砕流台地にかけての地下地質層序を確立し,活 構造の変位速度を明らかにすることを目的として3か 所でボーリング調査を行った.個々のボーリングコア の層相は,すでに小松原・小松原(2012),田邉ほか(2013) で報告したが,層序を総括するために本稿で改めて層 相記載を行う.

調査位置(第2図A~C)は、伏在背斜(勇払背斜: 伊藤,1999)の軸部に当たる苫小牧港東港近傍の苫小 牧市弁天地内(BT1:北緯42度36分56.02秒,東経 141度47分17.49秒,孔口標高T.P.+3.5m),同背斜西 翼部で深部構造では斜軸部に当たる河口右岸の苫小牧 市勇払1-2(YF1:北緯42度37分29.5秒,東経141度 44分16.1秒,孔口標高T.P.+1.74m),及び支笏火砕流 台地中央部に当たる反射法地震探査測線Yufutsu-2(山 口ほか,2013)近傍の千歳市柏台1390番2(CT1:北緯 42度49分01.3",東経141度42分05.3",孔口標高 T.P.+16.02m)である.掘削長はBT1が80.6m(オール コア採取),YF1が79.7m(オールコア採取),CT1は 70.0m(うちコア採取部分は深度31.0m以深のみ)であ る.

BT1 及び YF1 は完新世中期の浜堤堆積物が発達す る (Moriwaki, 1982; 池田ほか, 1995 など)浜堤列平野 の東端付近に位置し,沿岸流による砂礫の運搬・堆 積が盛んに行われる環境にある(たとえば佐藤ほか, 2010).しかし,支笏火山噴出物の噴出以前においては 長沼低地~石狩平野と一連の低地をなしていたと考え られ,石狩川や夕張川などの現在は石狩湾にそそいで いる大規模河川が勇払低地に流入していた可能性もあ る.

CT1 に近い新千歳空港測候所と, YF1 に近い苫小牧 市内に位置する苫小牧特別地域記帳観測所の月別平均 気温の観測記録を気象庁ホームページ (http://www.data. jma.go.jp)の気象統計情報より比較すると,両者で夏 季の気温にはほとんど差はないものの,冬季には新千 歳空港測候所の方が 2℃前後低く,年平均気温は新千 歳空港測候所の方が約1℃低い.また,先第四系から なる山地との距離は弁天地区や勇払地区と比較して近 いため,山地から花粉が供給される量も相対的に多い と考えられる.

掘削にあたっては3か所とも外径86mm(内径 65mm)の油圧式ロータリーボーリングマシンを,コ ア採取にはロータリー式スリーブ内蔵二重管サンプ ラーを用いた.掘削工法は泥水と清水を併用したロー タリー式掘削を基本としたが一部の砂礫層の掘削にあ たっては無水掘削も行った.スライムを除いたコア試 料の回収率はBT1で89.4%,YF1で95.6%,CT1で 84.9%であった.

ここで著者間の役割分担を記す. BT1 と YF1 のコ ア記載等は小松原純子が, CT1 のコア記載等は田辺晋 が主に,石原武志が副となって担当した.また,貝化 石の鑑定は中島礼が行った.花粉化石の鑑定と古植生 に関する解釈は本郷美佐緒が担当した.古地磁気測定 は植木岳雪が行った.全体のとりまとめと周辺地域と の対比は小松原琢が担当した.

2. コアの分析手法

2.1 概 要

コア試料は半裁し、片方については写真撮影、記載、 はぎ取り標本を作成し、残りはアーカイブとして保管 した.もう半分については軟X線写真撮影用のスラブ 試料と含水率、古地磁気測定、粒度分析用のプラスチッ クキューブ試料を採取したあと、10cmごとに微化石 分析用の試料を採取した.貝化石、テフラ、年代測定 用試料は肉眼観察に基づいて適宜採取した.

はぎ取り試料の作成には東邦化学工業株式会社製の グラウト剤 OH-1AX を水で 10-20%に希釈したものを 使用した.軟X線写真撮影用のスラブ試料採取には 厚さ1cm幅5cmもしくは6cm,長さ25cmの透明プラ スチックケースを用いた.撮影時のX線の条件は電圧 40kV,電流3mA,照射時間は5-12秒,センサーはアー ルエフ株式会社製のデジタルX線センサーNAOMIを 用いた.

2.2 含水率測定及び粒度分析

キューブ試料採取にはプラスチックキューブ(容積 7cc)を用いた.キューブ試料は半裁したコアから礫 の多い層準を除き10cmおきに採取した.採取直後に 重量を測定した後,その後乾燥機で60度,48時間乾 燥させて再度重量を測定し,その差から含水率を求め た.BT1及びYF1については乾燥前に交流消磁による 古地磁気測定を行った上,含水率測定後63µmのふる い上で水洗後,重量を測定し含泥率を求め,さらに残 渣を250µmと2mmのふるいでふるって砂の粒度組成 を求めた.

2.3 放射性炭素同位体比年代測定

放射性炭素同位体比年代測定は堆積物中の植物片を 拾い出してイオン交換水で洗浄し,株式会社地球科学 研究所に AMS 法による測定を依頼した.その結果は 第1表にまとめて示すとともに,柱状図に記入した.

2.4 古地磁気測定

古地磁気測定は自然残留磁化の段階交流消磁実験, 非履歴性残留磁化の着磁と段階交流消磁実験,飽和等 温残留磁化と逆等温残留磁化の着磁の順に行った.自 然残留磁化の残留磁化測定及び段階交流消磁実験に は,磁気シールド室内に設置された2G社製パススルー 型超伝導磁力計(モデル760R)を用いた.段階交流消 磁実験は0~10mTでは2.5mT刻み,10~80mTでは 5mT刻みで行った.その結果は第3図と第7図に柱状 図とともに示し,かつ付表1-1,1-2に数値を示した.

2.5 珪藻分析

珪藻分析は株式会社パレオ・ラボに依頼して行った. 分析に当たっては1層準について泥質試料約1g(湿 潤重量)を用いた. 試料は秤量後過酸化水素水を用い て有機物を除去し,粒子を分散させ,細粒のコロイド を分離した.さらに懸濁残渣を遠心管に回収し,プレ パラートを作成し,1試料あたり200個体以上をめど に600~1000倍の顕微鏡下で同定・計数を行った.

本報告においては,鑑定結果を付表1に記すとともに,主に小杉(1988)及び安藤(1990)が設定した環境指標種群に基づいて区分し,各群の産出状況を図にまとめた.

2.6 花粉分析

花粉分析は有限会社アルプス調査所理学研究室の分 析装置を用いて本郷が行った.

分析に当たっては1層準について8~166 gを分 取し,水酸化カリウムを用いて試料を分解した.その 後1µm振動篩で粘土鉱物を除去した.次いでフッ化 水素酸処理によりケイ酸塩鉱物を除去し,重液を用い て比重分離することにより植物質を濃集させた.さら に酢酸処理とアセトリシス処理によりセルロースを除 去,酢酸と水で試料を洗い,グリセリンジェリーでプ レパラートに封入し,400倍及び600倍の顕微鏡で観 察した.花粉・胞子の同定に当たっては現生花粉標本 と比較して分類群を決定し,木本化石の花粉総数が1 試料につき200個を超えるまで計測した.本報告にお いては鑑定結果を付表2に記すとともに主要な植物分 類群を図中に記した.

2.7 テフラ分析

テフラ分析は大部分の分析を株式会社古澤地質に依 頼して行い,一部のガラスの屈折率測定を小松原琢が 行った.

分析に当たっては、古澤 (2003)の方法で前処理を 行った.本調査で多く出現した軽石についてはテフラ 本質物質と考えられる軽石のみをピックアップした 後、乳鉢で粉砕した.さらに全試料を #255 と #125 の メッシュシートを用いて極細粒砂径 (1/8 ~ 1/16mm)粒 子のみを取り出し、鉱物組成分析、屈折率測定及び化 学分析に供した.

屈折率測定は株式会社古澤地質製作の温度変化型屈 折率測定装置 MAIOT(古澤, 1995)を使用して行った. 測定個数はガラスで 30 片,重鉱物で 10 片以上とした.

化学分析はエネルギー分散型 X 線マイクロアナラ イザー (HORIBA EMAX ENERGY EX-250) を使用して 行った.加速電圧は 15 k V, 試料電流は 0.3nA, ビー ム径は 4µm 四方の範囲を 150mm のビーム径にて走査 させて測定した.ライブタイムは 150" である.また, 測定時毎に NIST620 ガラスを用いて測定値をチェック した.

3. 調査結果

3.1 苫小牧市弁天コア (GS-BT1) の解析結果

3.1.1 堆積物の層序区分と層相記載及び堆積環境の 推定

BT1 コアは推定される堆積環境から大きく 10 のユ ニットに分けられる. すなわち,下位からユニット BT 1-1 (泥質~砂質浅海成堆積物),ユニット BT1-2 (礫浜ないし河成堆積物),ユニット BT1-3 (泥質浅海 成堆積物),ユニット BT1-4 (潮間帯~淡水湿地及び河 成堆積物),ユニット BT1-5 (潮間帯~潮下帯の堆積 物),ユニット BT1-6(礫浜ないし河川河口部の堆積物), ユニット BT1-7 (内湾堆積物),ユニット BT1-8 (礫浜 堆積物),ユニット BT1-9(潮下帯~湿地堆積物),ユニッ ト BT1-10 (湿地堆積物) である.以下,ユニットご とに層相を記述する(第3,4図).

3.1.1.1 ユニット BT1-1 (泥質~砂質浅海成堆積物) 深度 80.6 ~ 71.3m

記載:本ユニットは主に細粒~極細粒砂及び泥からな る.深度 80.6 ~ 74.5m は泥質な極細粒砂からなり数セ ンチの厚さの泥層を頻繁に挟み,貝殻片,植物片及び 生痕化石が見られる.深度 74.5 ~ 71.3m は平行葉理 ~低角斜交層理の発達する淘汰のよい細粒砂を主体と し,細礫サイズの礫が散在する.74.5 ~ 74.2m には貝 殻片まじりの礫が見られる.73.2 ~ 73.1m 及び 72.7 ~ 72.6m に泥層を挟む.71.4 ~ 71.6m 付近は淘汰の悪い 泥質礫混じり砂からなり,腐植と植物片が濃集してい る.貝化石 Liocyma fluctuosa, Plicifusus sp., Macoma sp.を産する.本ユニットの砂層はピアノ線で容易に 切ることができる程度で固結していない.

本ユニットの含水率は、下部の泥質極細粒砂で20 ~23%,上部の細粒砂主体の部分で19~21%である. 本ユニットの含砂率は、上方粗粒化を反映して、下部 では20%前後であるが上部では70%を超える.

解釈:深度 80.6 ~ 74.5m は泥層を挟み生痕化石が発 達することから波浪限界以深の堆積物と考えられる. 74.5 ~ 71.3m は淘汰が良くハンモック状斜交層理と考 えられる堆積構造が見られることから,ストームの影 響を受けた浅海の堆積物と考えられる. 貝化石は外洋 の潮下帯の環境を示唆し,これと矛盾しない.

3.1.1.2 ユニット BT1-2 (礫浜ないし河成堆積物) 深度 71.3 ~ 64.65m

記載:本ユニットは主に直径 1cm 以下の小礫からなり, 基質は中粒~粗粒砂である.最大礫径は5.5cm である. 未固結のため掘削時の泥水により細粒の基質は流され てなくなってしまっている可能性がある(以下すべて の礫層にこの可能性がある).礫層全体からどぶのよ うな悪臭がする.深度65.5m 及び64.65~65.1m に貝 設片を含む.65.3m 付近を境に上方に向かって粗粒砂 に漸移する. 最上部から貝化石 *Turritella fortilirata* を 産する. 本ユニットは未固結である.

本ユニットからは採取されたキューブ試料は、下部の泥混じりの層準からの1点のみであるが、その含水率は14.3%である.

解釈:最上部から産する貝化石は外洋の潮下帯の環境 を示唆することから,この部分は沿岸流によって運ば れた礫浜の堆積物である可能性が指摘される.貝化石 を含まない下部~中部は淘汰のあまりよくない粗粒砕 屑物からなり,河成堆積物である可能性があるが断定 は難しい.いずれにせよ下位層と比較して低海水準期 の堆積物と考えられる.

3.1.1.3 ユニット BT1-3(泥質浅海成堆積物)深度 64.65~54.0m

記載:本ユニットは主に砂質泥からなり,最上部に極細粒砂を伴う. 粒度組成には上方粗粒化傾向が見られる. 深度 60.5 ~ 60.0m にラミナが見られるほかは塊状無層理で,全体に生痕化石を伴う. 深度 62.2m,57.1m,55.6 ~ 54.0m に貝殻片,深度 62.3m に直径 1.8cm 程度の礫,深度 58.3m,56.2 ~ 56.1m に少量の植物片を含む.本ユニットの砂層及び泥層はピアノ線で容易に切ることができる程度で固結していない.

本ユニットの含水率は下部の泥がちの部分で26~28%,上部の砂勝ちの部分で23~28%である. 含砂率は下部で数%,上部では10~20%であり,細粒分が卓越していることが示される.

解釈:全体に生痕が発達し泥質であること,貝殻片を 含むことから,波浪の影響を受けない浅海の堆積環境 が考えられる.礫州によって外洋から保護された内湾 環境の可能性がある.

3.1.1.4 ユニット BT1-4 (潮間帯~淡水湿地及び河成 堆積物) 深度 54.0 ~ 35.0m

記載:本ユニットは極細粒砂~中礫からなり,層相変 化に富む. 深度 54.0 ~ 52.0m は泥と極細粒砂の互層か らなり、極細粒砂部分には平行ラミナが見られる.深 度 53.8 ~ 53.6m には直径 1.5cm 程度の礫と貝殻片が密 集している. 深度 51.7~45.1m は主に細粒砂と細礫 の互層からなり、中粒砂、中礫を伴う. 深度 50.8 ~ 50.2mには貝殻片が混じる. 深度 45.1~43.0m は極粗 粒砂と小礫の互層からなり,直径2~6cmの礫が混じ る. 深度 43.0 ~ 42.3m は泥, 極細粒砂, 細粒砂の互 層からなり、全体にラミナが発達する. 深度 42.3 ~ 40.0m は細粒砂~極粗粒砂の互層からなり, 直径 3cm 以下の礫が散在する. 深度 40.0 ~ 37.1m は細礫~直径 最大 5cm の中礫からなり、上部は粗粒砂~極粗粒砂と 互層する. 37.1~35.3m は中粒砂,粗粒砂,極粗粒砂 の互層からなり、36.3m付近に小礫~直径最大5cmの 中礫を伴う. 深度 35.3 ~ 35.2m は黒褐色の有機質泥, 深度 35.1 ~ 35.0m は細粒砂からなる. 全体を通じて礫 層からはどぶのような悪臭がする.最下部から貝化石 Buccinum middendorffi を産する.本ユニットの砂層及 び泥層はピアノ線で容易に切ることができる程度で固 結していない.本孔直近の地盤調査ボーリング資料に よると、本ユニット相当層の標準貫入試験によるN値 は粘性土・砂質土ともに 50以上である.

本ユニットの含水率は、粒度変化と対応して幅広 く変化する.最下部の泥と極細粒砂の互層では20~ 22%、細粒砂と細礫の互層を主とする部分では細粒砂 部で17~20%、上部の礫勝ちの部分では粒度の変化 を反映して12~28%と大きな幅をもつ.含砂率も同 様に値の変化が大きい.

解釈:潮間帯の環境を示す貝化石を産すること,生痕 が見られることから,本ユニット下部は潮間帯付近で 堆積したと考えられる.一方中部から上部にかけては 植物片以外に化石はなく,最上部は有機質泥からなる ことから,汽水~淡水湿地の陸上環境が考えられる. 深度 40.0 ~ 35.3m は明瞭な基底と上方細粒化傾向が見 られることから河川流路堆積物と考えられる.以上の ように本ユニットは一連の浅海化を示していると解釈 される.

3.1.1.5 ユニット BT1-5 (潮間帯~潮下帯の堆積物) 深度 35.0 ~ 26.0m

記載:本ユニットは主に泥質極細粒砂からなり,泥層, 礫層を伴う. 深度 35.0 ~ 32.6m は生痕の見られる泥層 からなり、下部に薄い極細粒砂層と貝殻片を伴い、上 方に向かって有機質になり、最上部の10cmは固結し ている. 深度 32.6 ~ 32.2m は直径 5.3cm 以下の小礫~ 中礫からなり、貝殻片を伴う. 深度 32.2 ~ 26.0m は極 細粒砂と泥の互層からなり, 貝殻片, 植物片を含み, 生痕が全体に発達する.本ユニットの最下部からは 貝化石 Potamocorbula sp. を産する. また深度 32.2~ 28.2m には貝化石 Liocyma fluctuosa, Callithaca adamsi, Propebela sp., Acila sp. Clinocardium sp. Macoma sp. を 産し、合弁のものも多く含まれる.最上部の有機質粘 性土を除いて本ユニットの砂層及び泥層の大部分はピ アノ線で容易に切ることができる程度で固結していな い.本孔直近の既往地盤調査ボーリング資料によると, 本ユニット相当層の標準貫入試験によるN値は粘性土 で20前後,砂質土で40前後である.

本ユニットの含水率は、下部の泥〜泥質極細粒砂部 で21~29%、中〜上部の極細粒砂と泥の互層では砂 勝ちの部分で20~25%、泥勝ちの部分で22~30% である. 含砂率は下部では数%未満であるが中・上部 では30~60%前後である.

解釈:最下部は潮間帯の貝化石を産することから,潮間帯の堆積環境が考えられる.ユニット全体に生痕の 発達する泥を多く有することから,砂礫州で保護され た内湾環境が考えられる.深度32.6~32.2mの礫層を はさんで,上方に潮下帯の貝化石群集を含む砂質堆積 物に変化するのは、海面の上昇に伴って堆積深度が深 くなるのに伴いラビンメント面が形成されたと解釈で きる.

3.1.1.6 ユニット BT1-6 (礫浜ないし河川河口部の堆 積物) 深度 26.0 ~ 19.7m

記載:本ユニットは主に細礫~中礫の互層からなり, 礫質の極細粒~細粒砂を挟む. 礫径の大きいものは 6cmを越えるが,ほとんどは直径2cm以下である. 深 度19.7mで明瞭な境界をもって泥層からなる上位のユ ニット7に覆われる.貝化石片は含まれない.本ユニッ トは未固結である.本孔直近の地盤調査ボーリング資 料によると,本ユニット相当層の標準貫入試験による N値は50以上である.本ユニットの含水率は試料数 が3と少ないが,15~23%とばらつく.

解釈:明らかな指標がないため堆積環境の推定は難しいが、上下を生痕のある泥層に挟まれること、後述するように本ユニット中部に挟在する細粒分を多く含む層より温暖期の花粉を産することから高海水準期の礫浜堆積物である可能性が高い.しかし貝化石を欠くことから河川河口部の堆積物である可能性も否定できない.

3.1.1.7 ユニット BT1-7(潮下帯堆積物)深度 19.7 ~ 17.4m

記載:本ユニットは砂質泥及び泥質砂からなり,全体 に火山灰質で緑がかっている.深度19.5~19.25mは 中粒砂径の灰色の火山砕屑物からなり,平行ラミナ が見られる.深度19.33~19.32mには厚さ1cm程度 の純層の灰白色ガラス質テフラが挟在する.深度19.0 ~17.4mには巣穴状の生痕が発達し,生痕内部は直径 6mm以下の軽石を含む細粒~中粒砂で充填されてい る.深度17.5mの植物片からは42,970±470yBPの放射 性炭素年代が得られた(第1表).しかし,この年代 値は層序や古環境と合致しないため参考値として記す にとどめる.本ユニットの砂層及び泥層はピアノ線で 容易に切ることができる程度で未固結である.

本ユニットの含水率は23~28%である.また含砂 率は1試料を除いて40%未満である.

解釈:生痕が発達する泥質堆積物からなることから, 波浪の影響のおよばない静穏な潮下帯環境で堆積した と考えられる.深度 19.32 ~ 19.33m に挟在する降下火 山灰は後に述べるとおり洞爺テフラである.

3.1.1.8 ユニット BT1-8(礫浜堆積物)深度 17.4 ~ 8.0m 記載:本ユニットは主に直径 4cm 以下の礫からなり, 粗粒~極粗粒砂及び細礫と互層する.最下部の深度 17.4 ~ 16.0m は礫質の粗粒~極粗粒砂からなり,貝化 石片 Veneridaegen. et sp. indet., Crassostrea gigas, Mya japonica, Saxidomus purpurata を含む. 深度 10.4 ~ 10.3m には極粗粒の軽石層が見られる. 深度 9.0 ~ 8.0m にかけて直径 4cm 程度の礫を含む礫質極粗粒砂から直 径 8mm 以下の礫を含む礫質粗粒砂へ上方細粒化する. 礫層全体からどぶのような悪臭がする.本ユニットは 未固結である.本孔直近の既往地盤調査ボーリング資 料によると、本ユニット相当層の標準貫入試験による N値は 40 ~ 50 である.

なお,本ユニットでは含水率測定試料は採取してい ない.

解釈:最下部に潮間帯の貝化石群集を含み,次に述べるようにその上位のユニット BT1-9 にも生痕化石が見られることから,礫浜堆積物と考えられる.

3.1.1.9 ユニット BT1-9(潮下帯~湿地堆積物)深度 8.0 ~ 2.1m

記載:本ユニットは下位のユニットBT1-8の礫層から 漸移し,主に植物根と生痕が発達する泥層からなる. 深度8.0~7.4mには直径4mm程度の礫と粗粒砂がパッ チ状に含まれる. 深度7.4~4.0mは細粒砂で充填され た生痕が散在する. 深度5.0~2.1mには植物根化石が 発達する. 深度7.76mの植物片からは6,870±40yBPの 放射性炭素同位体比年代値(暦年未補正)が得られて いる.本ユニットは未固結である.本孔直近の地盤調 査ボーリング資料によると、本ユニット相当層の標準 貫入試験によるN値は粘性土で0~1,砂質土で6で ある.

本ユニットの含水率は最下部の砂層では20%前後の ものがあるが,主部では25~43%と高い値を示す. また含砂率は概ね30%未満であるが所により50%以 上という高い値を示す.

解釈:下部~中部には生痕化石が認められること,当時の平均的な海水準と比較して水深数m以深で堆積したと考えられることから,潮下帯で形成されたと考えられる.中部~上部には植物根化石が見られること,また上位に泥炭層(ユニットBT1-10)が堆積することから,潮間帯から湿地にかけての環境で形成されたと考えられる.

3.1.1.10 ユニットBT1-10(湿地堆積物)深度2.0~0.0m 記載:本ユニットは泥炭からなり,深度0.8~0.3mに 赤褐色の粗粒軽石層を挟む.

本ユニットの含水率は1試料を除き70~85%と極めて高い値を示す.含砂率は10~40%前後を示す. 本ユニットは未固結である.本孔直近の地盤調査ボーリング資料によると、本ユニット相当層の標準貫入試験による N値は0である.

解釈: 泥炭層であることから植物の生い茂った湿地で 形成されたと考えられる. 軽石層は岩片を含む粗粒褐 色軽石という肉眼観察上の特徴に加え, ボーリング地 点近傍の露頭試料の分析結果(高清水ほか, 2007)か ら AD1667 年に降下した樽前Bテフラ(Ta-b)火山灰と 考えられる.

3.1.2 古地磁気測定結果

BT1 コアの 65 層準について古地磁気測定を行った (付表 1-1 及び第3図).

その結果は付表 1-1 に示す通り, 深度 72.90 ~ 64.90mの区間でまとまって逆帯磁しており,他はすべて正帯磁ないし不安定であった.逆帯磁した層準は, ユニット BT1-1 最上部からユニット BT1-2 最上部に至る層準である.

3.1.3 珪藻分析結果

BT1 コアのうち, 粗粒堆積物からなるユニット BT1-2,4,6,8 を除く各ユニットの泥質部から 23 試料を採取 し珪藻分析を行った.

その結果を付表 2-1 及び第 5 図に示す. この図から 読み取れるようにユニット BT1-9 及び 10 を除いて, すべての分析を行った層準で外洋指標種群が優占す る. このことから明瞭な海成層であるユニット BT1-1,3,5 及び7は,いずれも塩分濃度が 35 パーミル以 上の外洋的な環境にあったと推定され,層相観察に基 づく堆積環境の解釈と矛盾しない.また,ユニット BT1-9 では下部から上部に向かって外洋指標種群が減 り,海水泥質干潟指標種群が増加しているが,これも 潮下帯~湿地堆積物と推定した堆積相の解釈と調和す る.また,ユニット BT1-10 では湖沼沼沢湿地指標種 群が優占しており,堆積相の解釈と調和する.

3.1.4 花粉分析結果

BT1 コアではユニット BT1-8 以外のユニットから計 35 試料を採取し分析を行った.

その結果を付表 3-1 及び第6図に示す. 花粉分帯は 木本植物の分類群の組み合わせに基づいて5帯(下位 から BT1-I帯~BT1-V帯)の地域花粉群集帯を設定 した.以下に、ユニット毎に各分帯との関係及びその 特徴について述べる.

3.1.4.1 ユニット BT1-1 及び 2

ユニット BT1-1 では針葉樹の Picea 及び落葉広葉樹 の Alnus が優勢であり, Betula がこれらに次ぐ. 落葉 広葉樹の Quercus は低率, Fagus は極めて低率である. シダ植物の Selaginella selaginoides は, 産出率は低いが 層位的に連続して産出する. このような特徴を持つ花 粉帯を BT1- I 帯とする.

ユニット BT1-2 は粗粒砕屑物が多いため,最上部の 1 試料のみで分析を行った.ユニット BT1-2 の最上部 は Betula が高率で, Alnus がやや低率なことを除くと ユニット BT1-1 と同様の傾向を示し, BT1- I 帯に属 するとした.

3.1.4.2 ユニット BT1-3

ユニット BT1-3 では, 落葉広葉樹の Quercus, Alnus, 及び Fagus が優勢であり, Juglans / Pterocarya 及 び Tilia を伴う. Picea, Abies 及び Cryptomeria など の常緑針葉樹の分類群が伴われる. とくに Fagus は木 本植物中で最多の約 20%に達しており,他の層準と 明らかに異なった特徴を示す. この特徴的な花粉帯を BT1- II とする.

3.1.4.3 ユニット BT1-4

ユニットBT1-4 は粗粒砕屑物が多く3 試料でのみ分 析を行っている.このユニットは落葉広葉樹の Betula 及び Alnus, 常緑針葉樹の Picea が優勢である一方, 落葉広葉樹の Quercus は低率, Fagus は極めて低率で ある.このような花粉帯を BT1-Ⅲ帯とする.

3.1.4.4 ユニット BT1-5

ユニット BT-5 は下部の4 試料が落葉広葉樹の Betula を高率に含む BT1-Ⅲ帯(前述)に、上部の1 試料が 同 Quercus を高率に含む BT1-Ⅳ帯(後述)に対応する. Quercus に富む上部の1 試料は粘土質の堆積物から得 ている.

3.1.4.5 ユニット BT1-6

ユニット BT1-6 は粗粒砕屑物を主体とするため、中部の細粒分を多く含む層準から1 試料しか得ていないが、上下ユニットと同様に Quercus に富む BT1- IV帯 に属する.

3.1.4.6 ユニット BT1-7

ユニット BT1-7 では Toya の上位の泥質堆積物より 2 試料を採取し分析を行った.このユニットは花粉分 帯上ではユニット5上部から一連で,Quercus,Betula 及び Alnus などの落葉広葉樹の分類群が高率を占め, Ulmus を伴う.Fagus は極めて低率である.また Picea 及び Abies などの落葉針葉樹の分類群が伴われる.こ のような特徴をもつ花粉帯を BT1-IV帯とする.

3.1.4.7 ユニット BT1-9 及び 10

ユニット BT1-9 及び 10 では *Quercus* 及び *Alnus* など の落葉広葉樹の分類群が高率を占め, *Fagus* が低率に 伴われる. *Picea* などの常緑針葉樹の分類群は極めて 低率である. このような特徴をもつ花粉帯を BT1- V 帯とする.

3.1.5 テフラ分析

BT1 コアからは深度 19.33m(ユニット7最下部)の 灰色ガラス質テフラ1 試料と深度 17.65m(ユニット7 上部)の2 試料を分析に供した.ガラスの屈折率は深 度 19.33m のものが 1.496 ~ 1.499(モードは 1.497 ~ 1.498), 深度 17.65m のものが 1.501 ~ 1.505(モードは 1.503 ~ 1.504) という値を示した.

また, 深度 19.33m のテフラの主成分化学組成は付 表 3 に記すように CaO の組成が 0.38% と特徴的に低 い値を示すほか, TiO₂, MgO, FeO の組成はそれぞれ 0.08%, 0.01%, 0.99%と低い値を示す. このような 化学組成は洞爺テフラに特徴的であり(町田・新井, 2003), 洞爺湖近傍で得られた標準試料について同じ測 定機器を用いて同様の分析を行った結果と全成分が誤 差の範囲内で一致する(付表 4-1).以上の化学分析結 果とガラスの屈折率とを併せて, 深度 19.33m のテフ ラは洞爺テフラ(Toya)であると判断される. その年代 は町田・新井(2003)によると 112 ~ 115ka(MIS 5d) で ある.

3.2 苫小牧市勇払コア (GS-YF1)の解析結果 3.2.1 堆積物の層序区分と層相記載及び堆積環境の 推定

採取したコアは推定される堆積環境から12ユニッ トに分けられる. すなわち,下位からユニットYF-1(砂 州堆積物),ユニットYF1-2 (礫浜堆積物),ユニット YF1-3 (潮下帯堆積物),ユニットYF1-4 (上部外浜~ 河成堆積物),ユニットYF1-5(前浜~塩水干潟堆積物), ユニットYF1-6 (河成堆積物),ユニットYF1-7 (潮下 帯~潮間帯堆積物),ユニットYF1-8(上部外浜堆積物), ユニットYF1-9 (潮下帯堆積物),ユニットYF1-10 (礫 州~河成堆積物),ユニットYF1-11(後背湿地堆積物), ユニットYF1-12(湿地堆積物)である.以下,ユニッ トごとに層相を記述する(第7,8図).

3.2.1.1 ユニット YF1-1(前浜堆積物)深度 79.7 ~ 78.3m

記載:本ユニットは砂質泥,細粒砂,中粒砂からなる. 砂粒には軽石粒子を多く含む.ラミナが残る程度に生 痕が発達する.ユニット上半部の中粒砂中にはカキ化 石の破片が散在する.最上部 10cm は礫質となり上位 のユニットへ漸移する.また,本ユニットの砂層及び 泥層はピアノ線で容易に切ることができる程度で固結 していない.

本ユニットの含水率は粒径変化が大きいことや軽石 を多く含むことを反映して19~29%とばらつく.含 砂率も同様に40~80%とばらつきが大きい.

解釈:潮間帯の貝化石を含み生痕が発達すること,砂 層中にラミナが残されていること,及び上位の円礫主 体のユニットに漸移することから,前浜堆積物と考え られる.

3.2.1.2 ユニット YF1-2(礫浜堆積物)深度 78.3 ~ 61.4m

記載:本ユニットは主に直径 2cm 以下の円礫からなり, ごくまれに直径 3 ~ 5cm の礫を含む. 全体に貝殻片が 散在する. 深度 70.3 ~ 69.6m は緩い細粒砂からなり, コア径 (65mm) 以上の幅のカキ殻を含む. 淘汰が良く 基質はほとんど認められない. 本ユニットは未固結で ある. 本ユニットからは含水率・含砂率測定試料を採取し ていない.

解釈:細粒の礫からなり淘汰が良いこと,貝殻片を全体に含むこと,一部にカキ化石を含むことから浅海の 礫浜堆積物と考えられる.カキ化石を含む細粒砂の部 分は礫州で保護された内湾状の堆積環境が示唆される.

3.2.1.3 ユニット YF1-3 (潮下帯堆積物) 深度 61.4 ~ 52.8m

記載:本ユニットは主に泥からなり,極細粒砂を挟む.全体に貝殻片を含み,生痕が発達する.極細粒砂 層はしばしば生痕で撹乱されているが,上半部,特に 深度 58.0m 以浅では明瞭なラミナが残っているところ もある.深度 56.5 ~ 53.9m は砂層の挟みがほとんどな く塊状である.最上部の深度 53.9 ~ 52.8m は極細粒 砂,細粒砂,貝殻片と細礫混じりの粗粒~極粗粒砂の 互層からなり,平行葉理,斜交層理が発達する.本ユ ニットからは外洋の潮下帯に棲息する貝化石 Turritella fortilirata, Cryptonatica sp., Mercenaria? sp. などを産 する.また,本ユニットの砂及び泥層はピアノ線で容 易に切ることができる程度で固結していない.

本ユニットの含水率は22~30%前後である.また, 含砂率は10~30%の部分が多いが泥層上部では5% 以下と低い値を示す.

解釈:主に泥からなり生痕が発達すること,外洋の潮 下帯の貝化石を含むことから,外洋の波浪限界以深の 環境であったと考えられる.最上部で斜交層理が見ら れ粗粒の堆積粒子が増えていることから堆積環境は 徐々に波浪の影響を受けるようになっていったと考え られる.

3.2.1.4 ユニット YF1-4(上部外浜~河成堆積物)深 度 52.8 ~ 48.35m

記載:本ユニットは直径 4cm 以下の円礫からなり,ご くまれに直径 6cm 程度の礫を含む.礫は比較的淘汰が 良く,貝殻片は含まれない.泥質基質を含む.

なお、本ユニットから含水率や粒度の測定試料は採 取していない.

解釈:指標相を欠くため断定はできないが,比較的淘 汰の良い円礫層であること,下位ユニットと漸移する ことから,浅海化が進んで波浪の影響を強く受けるよ うになり,上部外浜ないし前浜で堆積した堆積物であ る可能性があるが,泥質基質を含むことから河成堆積 物の可能性も否定できない.本ユニットは未固結であ る.

3.2.1.5 ユニット YF1-5(前浜~塩水干潟堆積物)深 度 48.35 ~ 44.55m

記載:本ユニット下部は淘汰の良い中粒砂,粗粒砂, 細礫の互層からなり,直径 1.5cm 以下の礫を含む.泥 質基質は含まない.上方に向かって細粒化し,深度 46.4~45.7mは泥質細粒砂と泥質中粒砂の互層からな り,最上部は極細粒砂の薄層を挟む泥からなる.深度 46.8mより上位では生痕が発達する.本ユニットの砂 層及び泥層はピアノ線で容易に切ることができる程度 で固結していない.

本ユニットの含水率は下部で17~19%,上部の泥 質細粒砂と泥質中粒砂の互層で25~30%である.含 砂率は下部で8~30%ないしそれ以上,上部で20% 以下である.

解釈:本ユニット下部の層厚 1.9m の部分は淘汰の良 い砂を中心とする成層した堆積物からなり,生痕や泥 質基質は認められない.こうした特徴から本ユニット 下部は下位ユニットから引き続いて浅海化が進み,波 の影響をさらに強く受けて堆積した前浜堆積物である 可能性が高い.一方,上部の1.9m は,下部から漸移 的に上方細粒化し,生物擾乱の認められる泥質堆積物 となっている.後述するように本ユニット上部からは 海水泥質干潟の指標となる珪藻化石が湖沼沼沢湿地性 及び中~下流河川指標種群と共に産することから,淡 水と海水が入り込む塩水干潟のような環境で堆積した 地層と考えられる.

3.2.1.6 ユニット YF1-6 (河成堆積物) 深度 44.55 ~ 39.4m

記載:本ユニットは直径 2cm 以下の礫からなり,まれ に直径 4.5cm 程度の礫を含む.比較的淘汰が良く貝殻 片は含まれない.深度 39.8 ~ 39.4m は礫混じりの砂質 泥からなり淘汰が悪い.深度 40.4 ~ 40.1m は黄土色の 軽石粒を多く含む.下位ユニットとの境界は非常に明 瞭である.本ユニットは未固結である.

なお本ユニットからは含水率及び粒度分析のための 試料は得ていない.

解釈:本ユニットは,上部に淘汰の悪い泥質基質を含 む部分があり,少なくとも上部は河川の影響を強く受 けていると考えられる.

3.2.1.7 ユニット YF1-7 (潮下帯~潮間帯堆積物)深 度 39.4 ~ 27.65m

記載:本ユニットの下部~中部は主に泥から,上部は 主に細粒砂からなり,全体に上方粗粒化する.全体に 生痕が発達し,直径 2mm~1.5cm 程度の軽石粒子を まれに含む. 深度 39.1~38.9m は腐植質で植物片を 含む. 深度 38.3m 付近には Macoma sp.及び Batillaria sp.の貝殻片が,深度 36.4~36.3m には Crassostrea gigas の貝化石片が含まれる. 深度 32.7m から上位は パッチ状(生痕)に極細粒砂を含み,深度 30m から は細粒砂が主体となる. 深度 30.3m より上位では円 磨された軽石粒子が目立って多くなる.軽石粒子の直 径は 1.7cm 以下である.本ユニットの深度 39.05m の 植物片から 9,480±50yBP,深度 38.96m の植物片から 9,290±50yBP, 深度 36.40m の貝から 9,500±40yBP, 深 度 29.70m の木片から 8,180±40yBP の放射性炭素同位 体比年代値(暦年未補正値)を得ている.本ユニット 最上部の深度 27.68m の植物片から 10,510±50yBP の放 射性炭素同位体比年代値を得たが,これは YF1-7 の他 の年代値より古く 2 次堆積物の年代値と考えられる. 本ユニットは未固結である.

本ユニットの含水率は下部では 30 ~ 37%であるが 上方に向かって減少し,上部の細粒砂で 22 ~ 30%で ある.また含砂率は下部では数%未満であるが上方に 向かって増加し上部では 60%以上であり,全体に淘汰 度が高いことが示される.

解釈: 泥〜細粒砂からなり生痕が発達すること,潮間 帯の貝殻片を含むことから,潮間帯かそれより深く, 波による撹乱を受けにくい潮下帯的な環境で堆積した と考えられる.上方粗粒化することから徐々に粗粒砕 屑物の供給が多くなっていったと考えられる.

3.2.1.8 ユニット YF1-8(上部外浜堆積物)深度 27.65 ~ 22.75m

記載:本ユニットは主に直径 2cm 以下の円礫からなる. 礫の最大の直径は 5.5cm である. 粗粒砂〜細礫サイズの円磨された軽石を多く含み,白く目立つ.上部(深度 25.2 ~ 22.75m)は下部に比べ軽石の含有量が低い. 基質は中〜極粗粒砂を主とするが,部分的に泥質の基質を含む.また,ラミナの発達した粗粒砂層を挟有する.全体に 0.5 ~最大 2cm の貝化石 Ruditapes philippinarm, Macoma incongrua などが散在する.本ユニットは未固結である.本孔直近の地盤調査ボーリング資料によると,本ユニット相当層の標準貫入試験によるN値は砂質土で40 ないし50以上である.本ユニットからは含水比測定及び粒度分析用の資料を採取していない.

解釈:潮間帯〜潮下帯の貝殻片を含む礫層からなり, 多量の円磨された軽石を含むことから,波浪時に陸側 から多量の粗粒堆積物が供給される上部外浜斜面の堆 積物と考えられる.

3.2.1.9 ユニット YF1-9(潮下帯堆積物)深度 22.75 ~ 16.75m

記載:本ユニットは主に貝殻片と粗粒砂~極粗粒砂サ イズの軽石粒子を多く含む極細粒砂からなり,生痕 化石が見られる.最下部(深度 22.75~21.4m)は細 粒砂,中粒砂,粗粒砂の互層からなり,上方細粒化す る.最上部(深度 17.8~16.75m)は細粒砂と中粒砂 の互層からなり,上方粗粒化する.深度 19.8~17.0m 付近には平行~斜交ラミナが見られる.本ユニット中 ~下部より,貝化石 Macoma tokyoensis, Macoma sp, Callithaca adamsi, Yoldia sp, Acila insignis が得られた. 深度 21.1m 及び 17.58m の植物片試料から 6,260±40yBP 及び 6,150±40yBPの放射性炭素同位体比年代値を得た. 本ユニットは未固結である.本孔直近の既往地盤調査 ボーリング資料によると、本ユニット相当層の標準貫 入試験によるN値は粘性土で6~10、砂質土で10~ 20である.

本ユニットの含水率は、19~25%前後を示す.また含砂率は測定したほとんどの層準で50%を超える. 解釈:本ユニットの中~下部には潮間帯以深に棲息する貝化石が含まれ、生痕化石が認められることから、 波浪の影響の及ばない静穏な潮下帯で堆積したと考え られる.上部は平行~斜交ラミナが認められ、若干波 浪の影響を受けるようになった可能性が高い.

3.2.1.10 ユニット YF1-10 (礫州~河成堆積物) 深度 16.75 ~ 4.55m

記載:本ユニットは最大径 5cm の礫を含む砂礫層を主体とし、中~下部に礫まじり細砂~粗砂をしばしば挟有する.礫は細礫ないし径 1cm 以下の中礫を主体とする.全体に不明瞭に成層しており、泥~粗粒砂までの様々な粒度の基質を含む.貝殻や生痕は認められない.本ユニットは未固結である.本孔直近の既往地盤調査ボーリング資料によると、本ユニット相当層の標準貫入試験による N 値は礫質土で 15 ~ 20 である.

本ユニット中部に挟在する砂層から,含水率で11 ~20%,含砂率で50~60%の値を得た.

解釈:本ユニットは成層した砂礫層主体の地層からな り、礫州ないし河川の堆積物である可能性が指摘でき る.また、本ユニット下部と中部の2層準で珪藻化石 を探したが、珪藻化石はほとんど検出されなかった. このことは当ユニットが水域でない環境下で堆積した ことを示唆する.また、前ユニットの堆積時期が最高 海水準期を示しており、それに引き続いて堆積した 本ユニットは礫州の形成時期に堆積したと考えられる (Moriwaki,1982など).これらを総合すると、本ユニッ トは下部が礫州堆積物であるものの一部が河成(旧河 道)堆積物である可能性も否定できない.

3.2.1.11 ユニット YF1-11(後背湿地堆積物)深度 4.55 ~ 1.8m

記載:本ユニットは、植物片を含む淘汰の悪い礫ま じり中粒~極粗粒砂層からなる.一部は腐植質であ る.また直立した植物根化石が認められる.最上部 の中~極粗粒砂は逆グレーデイングしている.深度 4.2m 及び 4.1m の植物片試料から 1,400±40yBP 及び 1,290±30yBP の放射性炭素年代を得た.本ユニットは どぶのような悪臭を発する.本ユニットは未固結であ る.本孔直近の既往地盤調査ボーリング資料によると、 本ユニット相当層の標準貫入試験による N 値は砂質土 で 5 ~ 10 である.

本ユニットの含水率は 12 ~ 20%前後を示す.また 含砂率は 10 ~ 30%前後である.

解釈:直立した植物根化石が認められること, 逆グレー

デイングを示す砂が挟在することから,河川からの溢 流した砕屑物が多く堆積する後背湿地で堆積した堆積 物と考えられる.

3.2.1.12 ユニット YF1-12(湿地堆積物)深度1.8~0.0m 記載:本ユニットは礫・砂まじりの泥炭を主とし,最 下部に軽石混じり細~粗粒砂,中部に淘汰の良い中粒 砂を挟有する.泥炭には部分的に軽石が含まれる.ま た深度1.20m 付近には近代以降のものと考えられる茶 碗のかけらが含まれる.

本ユニットの含水率は5~20%であり泥炭質堆積物 としては低い値を示す.また含砂率は25%前後であ り,泥炭としてはかなり無機砕屑物に富むことが示さ れる.

解釈:しばしば河川や砂浜から砂や礫が供給される泥 炭湿地の堆積物と考えられる.

3.2.2 古地磁気測定結果

ユニット YF1-2,4,6,8 を除く細粒分主体の堆積物を 約 10cm 間隔で合計 301 層準について古地磁気測定を 行った(付表 1-2 及び第 7 図). その結果は,数 10cm 未満の区間で局所的に逆帯磁した層準は認められるも のの,まとまって逆帯磁している層準は認めがたく, 大部分の層準で正帯磁した層準が連続する.

3.2.3 珪藻分析結果

ユニット YF1-4,6,8 を除く各ユニットの泥質分から なる 26 試料について珪藻分析を行った.

その結果を付表 2-2 及び第9図に示す. 図から読み 取れるようにユニット YF1-2 及び 10 では非常にわず かな数しか珪藻化石が得られなかった. これらは粗粒 堆積物を主としており,水域ではなかった可能性を示 すといえる.

ユニット YF1-1,3,7及び9では外洋指標種群が多数を占める.しかし,絶滅種の占める割合が高いことから2次堆積性のものが多量に含まれている可能性がある.ユニット YF1-3,7,9では沼沢付着生指標種群も出現することから,淡水が流入しやすい場所にあったと推定される.ユニット7の下部では海水藻場指標種群が特徴的に多く産出することから,藻場環境であったと推定される.

またユニット YF1-5 と7 基底部では湖沼沼沢湿地指 標種群や沼沢湿地付着生指標種群,中~下流性河川指 標種群が特徴的に産出することから,淡水域で堆積し た可能性が高いと判断される.しかし,特にユニット YF1-5 上部では海水泥質干潟指標種群が多く産出する ことや外洋指標種群も産することから海水の影響を受 ける環境にあった可能性が指摘できる.

ユニット YF1-11 上部では湖沼沼沢湿地指標種群が 特徴的に出現したことから,堆積相の解釈と併せて後 背湿地的な環境を示すと考えられる.

3.2.4 花粉分析結果

ユニット YF1-4, 6, 8, 10, 及びユニット 11 を除く 層準から 26 試料を採取し分析を行った.

その結果を付表 3-2 及び第 10 図に示す. 花粉分帯 は木本植物の分類群の組み合わせに基づいて4帯(下 位から YF1-I帯~YF1-IV帯)の地域花粉群集帯を設 定した.また,YF-IV帯については3亜帯(下位から Yf1-A 亜帯,-B 亜帯,-C 亜帯)に細分した.以下に, ユニットと各花粉分帯との対応,及び花粉分帯の特徴 について述べる.

3.2.4.1 ユニット YF1-1

ユニット YF1-1 では 1 試料のみ分析を行った. そ の結果,落葉広葉樹の Betula 及び Alnus,常緑針葉樹 の Picea が優勢な一方,落葉広葉樹の Quercus は低率, Fagus は極めて低率であるという結果を得た. このよ うな花粉組成をもつ帯を YF1- I 帯とする.

3.2.4.2 ユニット YF1-2

ユニット YF1-2 は粗粒砕屑物を主体とするが、中部 に挟在する砂質層で1 試料の分析を行った.その結果 は、ユニット YF1-1 と似ており、YF1-I 帯に対応する.

3.2.4.3 ユニット YF1-3

ユニット YF1-3 は下半部,中~上部及び最上部で *Picea と Quercus* の産出率が大きく変化するため,3つ の花粉分帯に区分される.

ユニット YF1-3 の下半部はユニット YF1-1 及び 2 と 同様に Betula, Alnus 及び Picea が優勢で Quercus は低 率な YF1- I 帯に属する.

ユニット YF1-3 の中〜上部は, 落葉広葉樹の Quercus, Alnus 及び Betula などの分類群が高率を占め, Ulmus を伴う. また Picea 及び Abies などの常緑針葉 樹の分類群が伴われ, Fagus は極めて低率である. こ のような花粉組成を YF1- II 帯とする.

ユニット YF1-3 の最上部は後述するユニット YF1-5 や7基底部と同じく,落葉広葉樹の Betula 及び Alnus, 常緑針葉樹の Picea が優勢で,落葉広葉樹の Quercus は低率, Fagus は極めて低率である.このような組成 を YF1- Ⅲ帯とする.

3.2.4.4 ユニット YF1-5

ユニット YF1-5 上部の泥質部から1 試料で分析を 行った.その結果,ユニット YF1-3 の最上部と同様の 傾向を示し,ユニット YF1-5 は YF1-Ⅲ帯に属する.

3.2.4.5 ユニット YF1-7

ユニット YF1-7 は主として *Quercus* と *Betula* 及び *Fagus* の産出率によって基底部,下部,中部~上部で 異なる花粉分帯に分けられる.

ユニット YF1-7 基底部の腐植質層はユニット YF1-3

最上部と同様に, Betula, Alnus及び Picea が優勢 で, Quercus は低率, Fagus は極めて低率なユニット YF1-Ⅲ帯に属する.

ユニット YF1-7 下部及び中〜上部では, 落葉広葉 樹の Quercus が極めて高率を占め, Betula, Carpinus / Ostrya, Alnus, Juglans / Pterocarya 及び Ulmus などがこ れに次ぐ. Fagus は低率であるが下位の層準より安 定した産出が認められる. Picea など常緑広葉樹の分 類群は低率である. このような花粉組成をもつ帯を YF1- IV帯とするが, この帯は, 木本植物の分類群の 組み合わせ, 特に Fagus 及び Carpinus / Ostrya の産出 率を考慮して, 次の3 亜帯に細分される.

YF1- IV -A 亜帯

落葉広葉樹の Betula 及び Quercus が高率を占め, Alnus, Juglans / Pterocarya, Carpinus / Ostrya 及び Ulmus な どがこれに次ぐ. Fagus は極めて低率である. 針葉樹 の分類群は低率であり, Cryptmeria は Alnus, Juglans / Pterocarya, Carpinus / Ostrya 及び Ulmus などがこれに 次ぐ. Fagus は極めて低率である. 針葉樹の分類群は 低率であり, ほとんど産出しない.

YF1- IV -B 亜帯

落葉広葉樹の Quercus が極めて高率を占め, Betula, Carpinus / Ostrya, Alnus, Juglans / Pterocarya 及 び Ulmus などがこれに次ぐ. Fagus は低率であるが, 下 位の亜帯より安定した産出が認められる. 針葉樹の分 類群は低率であるが, Cryptomeria は下位の亜帯に比 べ微増する.

YF1- IV -C 亜帯

落葉広葉樹の Quercus が極めて高率を占め, Carpinus / Ostrya, Betula, Alnus, Fagus, Juglans / Pterocarya 及び Ulmus などがこれに次ぐ. 針葉樹の分類群は低率 であるが, Cryptmeria は下位の亜帯に比べ微増する.

このうち, ユニット7の下部は YF1- IV -A 帯に相当 する.

一方ユニット7の中~上部は下部と比較して
 Quercus の産出率が高く, Fagus が安定して産出するこ
 とから YF1- IV -B 亜帯に相当する.

3.2.4.6 ユニット YF1-9

ユニット YF1-9 からは下部の1 試料と中部の2 試料で分析を行っている. このうち,下部と中部では, Fagusの産出率によって花粉亜帯が分けられる.

下部では Quercus が極めて高率を占め, Betula, Carpinus / Ostrya, Alnus, Juglans / Pterocarya 及び Ulmus などがこれに次ぐという YF1-IV-B 亜帯の特徴を示す.

中部では *Fagus* と *Cryptmeria* が下部よりも増加して おり, YF1- IV -C 亜帯に対応する.

3.2.5 テフラ分析

YF1 コアは深度 39.4m 以浅(ユニット YF1-7 以上 の層準)に多くの円磨された軽石が層状〜点在状に含 まれる. これらの中に編年指標となるテフラが含まれ ていないか検討する目的で19層準について鉱物組成 分析を行った. 鉱物組成と肉眼による軽石の観察及び 顕微鏡下における晶癖の観察などから支笏火山噴出物 (Spfl 及び Spfal ~ 10)に由来し,遠方より飛来した広 域テフラが含まれる可能性は低いと考えられた.

3.3 千歳市柏台コア (GS-CT1) の解析結果

3.3.1 堆積物の層序区分と層相記載及び堆積環境の推定

CT1では支笏火山噴出物 (Spfl,及び Spfal ~ Spfal0) であることが近傍のボーリングデータから確実な深度 31mまではノンコアで掘削し,その下位の 39mをオー ルコアで採取した.採取したコアは推定される堆積環 境から6ユニットに分けられる.すなわち,下位から ユニット CT1-1 (潮下帯堆積物),ユニット CT1-2 (上 方浅海化する海成堆積物),ユニット CT1-3 (河成~ 海成堆積物),ユニット CT1-4 (潮下帯堆積物),ユニッ ト CT1-5 (河成堆積物),ユニット CT1-6 (降下火山噴 出物)に分けられる.以下,ユニットごとに層相を記 述する(第11 図, 12 図)

3.3.1.1 ユニット CT1-1 (下部外浜斜面以深の静穏な 海成堆積物) 深度 70.00 ~ 64.50m

記載:本ユニットは、下部の軽石によって構成される 細・中礫層,上部のシルト質極細粒砂層からなる.ユ ニット下部の軽石質礫層は,よく円摩された最大径 15mmの軽石のみからなる礫とシルト~極細粒砂質の 基質からなり、明瞭に成層する. 軽石質砂礫層の中部 には厚さ45cmのシルト質極細粒砂層が挟在する.軽 石質砂礫層を構成する各単層の上部には生痕化石が発 達する.本ユニット上部の極細粒砂層には,生痕化石 と生物攪乱,ウニ片,植物片,貝殻片がみられる.シ ルト質極細粒砂層にはシルトの平行葉理がみられ、極 細粒砂の含有量が増加することによって、やや上方粗 粒化する.また、シルト質極細粒砂層にはよく円摩さ れた軽石が点在する.シルト質極細粒砂層の最上部に は最大径 4mm の軽石層が挟在する.本ユニットは未 固結である.本孔直近の既往地盤調査ボーリング資料 によると、本ユニット相当層の標準貫入試験による N 値は砂質土で20前後である.

本ユニット下部の軽石質礫層の含水率は40~60% 前後,上部のシルト質極細粒砂層の含水率は25~ 32%前後である.軽石質礫層の含水率が高いのは,発 泡の良い軽石を多く含むためと考えられる.

解釈:下部の軽石質礫層は軽石以外の粗粒物質を含ま ないこと,軽石中のガラス等が均質な化学組成・屈折 率分布を示すこと,単層上部に生痕化石が発達してい ることから,近傍の火山の噴火に伴って多量の火山噴 出物が海域に降下したものと考えられる.上部のシル ト質極細粒砂層は,ウニ片を産し生物擾乱を受けてい るが、シルト質であること、及びシルトの平行葉理が 認められることから、潮下帯において形成されたと考 えられる.

3.3.1.2 ユニット CT1-2(上方浅海化する海成層) 深度 64.50 ~ 54.00m

記載:ユニット CT1-2 は、塊状のシルト層から中粒砂 に上方粗粒化する層相から構成される.本ユニット全 体を通して生痕化石と生物攪乱がみられる.シルト層 には10cm 以下の層厚の極細粒~中粒砂の層理がみら れ、基底部の深度 64.45m 付近には貝殻片が含まれる. 深度 59.6 ~ 59.7m の細粒砂層にはカレント・リップル 層理がみられる.シルト層に狭在する砂層には葉理も 含まれ、時折リズミカルな互層やダブル・マッドドレ イプをなす.上部の細粒砂層には平板状斜交層理がみ られる.本ユニットに含まれる植物片の含有量は下部 から上部にかけて増加する.また、本ユニットの砂及 び泥層はピアノ線で容易に切ることができる程度で固 結していない.本孔直近の既往地盤調査ボーリング資 料によると、本ユニット相当層の標準貫入試験による N値は粘性土で 6 ~ 10,砂質土で 15 ~ 40 前後である.

本ユニットの含水率は、下部の塊状シルト層で27 ~35%、細粒砂主体の部分で21~40%、上部の中粒 砂主体の部分で10~20%前後である.

解釈:全体として上方粗粒化し,かつ有機物の含有量 が上方ほど多くなることから静穏で陸源物質の供給の 少ない環境から,デルタの前進などに伴って多量の陸 源物質の供給を受ける環境へと徐々に変化していく過 程が示された堆積相と捉えられる.本ユニットの中~ 下部は生物擾乱を受け,所によりマッド・ドレイプが 認められることから,潮汐の影響を受けていたと考え られる.また上部の細粒砂層には平板状斜交葉理が認 められ,下部と比較して水理営力が増した可能性が高 い.以上から,本ユニットは上方に浅海化する海成の 堆積物と考えられる.

3.3.1.3 ユニット CT1-3 (河成~海成堆積物) 深度 54.0 ~ 51.5m

記載:本ユニットはよく円摩された中礫からなる礫層 から構成される.本ユニットは基質支持の礫層であり, 基質は中粒~粗粒砂から構成される.本ユニットの上 部からは Felaniella usta (Gould) などの貝殻片が多産す る.本ユニットは未固結である.本孔直近の地盤調査 ボーリング資料によると,本ユニット相当層の標準貫 入試験による N 値は礫質土で 50 以上である.

本ユニットの含水率は 10 ~ 13%と低い値を示す. 解釈:本ユニット下部は貝殻を含まない基質支持の砂 礫層であり,河川環境を示す可能性が高い.しかし上 部からは貝化石 Felaniella usta (Gould)を産することか ら,水深 10 ~ 50m 程度の海域環境へと変化していっ た可能性が高い.

3.3.1.4 ユニット CT1-4 (潮下帯堆積物) 深度 51.5 ~ 44.3m

記載:本ユニットは最下部において貝殻を多産する中 粒砂層,そしてその上部においてシルトと極細粒砂層 の互層から構成される.最下部からは貝化石 Felaniella usta (Gould) や Glycymeris yessoensis (Sowerby) などが産 出する.また,シルトと極細粒砂層の互層はシルト層 が卓越しており,極細粒砂層は主に層厚が lcm 以下の 葉理をなすことが多い.この互層には生痕化石と生物 攪乱が多くみられる.ユニット中部ではダブル・マッ ドドレイプが認められる.本ユニットの砂層及び泥層 はピアノ線で容易に切ることができる程度で固結して いない.本孔直近の地盤調査ボーリング資料によると, 本ユニット相当層の標準貫入試験によるN値は粘性土 で5~10,砂質土で40前後である.

本ユニットの含水率は,最下部の中粒砂層で15~30%,主部をなすシルトと極細粒砂層の互層で26~30%前後である.

解釈:最下部は*Felaniella usta* (Gould) と *Glycymeris yessoensis* (Sowerby) を共に産することから水深10~ 30mの海域であることが示される.また互層はシルト 層が卓越し,生痕化石と生物擾乱が多く認められるこ とから,静穏な内湾で堆積したものと考えられる.

3.3.1.5 ユニット CT1-5(河成堆積物) 深度 44.3 ~ 38.2m

記載:本ユニットは中礫と粗粒砂の互層から構成され る. 中礫層に含まれる礫はよく円摩されており,基質 は中粒〜粗粒砂から構成される. 礫層の淘汰はよくな い. また礫層は基質支持をなす. 粗粒砂層には平板 状斜交層理がみられる. ユニット上部の深度 40.8 ~ 40.3mにかけて逆グレーデイングした中粒砂から中礫 が認められる. このユニットに貝殻は含まれない. ユ ニット基底の層相変化は明瞭で急激である. 本ユニッ トは未固結である. 本ユニット相当層の標準貫入試験 による N 値は礫質土で 20 ~ 40 である.

本ユニットの含水率は、礫層で15~20%、砂層で 20~30%を示す。

解釈:本ユニットには貝殻が含まれず,淘汰が悪いこと及び一部に逆グレーデイングが認められることから,河川成堆積物である可能性が高い.

3.3.1.6 ユニット CT1-6(火山砕屑物)深度 38.2 ~ 31.0m

記載:本ユニットは細礫径を主として中粒砂~中礫径 からなるサイズの軽石から構成され,軽石の粒子はよ く円摩されている.本ユニットは20~50cm程度の逆 グレーデイングした単層群からなり,成層している. 上部を中心に黒色スコリアを含む.また,部分的に褐 色の土壤層を挟有する.本ユニットは未固結である.

本ユニットの含水率は25~35%前後を示す. 礫径

の割に高い含水率を示すのは,発泡の良い軽石を多く 含むためと考えられる.

解釈:本ユニットは一部で水流の影響を受けた降下火 砕物と考えられる.

3.3.2 花粉分析

ユニット CT1-1, 2, 4 及び 6 から計 20 試料を採取 し花粉分析を行った.

その結果を付表 3-3 及び第 13 図に示す. 花粉分帯は 木本植物の分類群の組み合わせに基づいて 3 帯(下位 より CT1-I帯~Ⅲ帯)の地域花粉群集帯を設定した. 以下に,ユニットと分帯の対応及び各分隊の特徴につ いて述べる.

3.3.2.1 ユニット CT1-1

ユニット CT1-1 では, 落葉広葉樹の Betula 及び Alnus, 常緑広葉樹の Picea が優勢である. 落葉広葉樹 の Myrica, Ericaceae 及び Empetrum がこれらに次ぐ. Quercus 及び Ulmus は極めて低率であり, Juglans / Pterocarya 及び Fagus の産出は極めて低率かつ断片的 である. このような特徴を持つ花粉帯を CT1- I 帯と する.

3.3.2.2 ユニット CT1-2

ユニット CT1-2 では下~中部の泥質堆積物で花粉 分析を行った. その結果は, ユニット1 と同様に Betula, Alnus 及び Picea が優勢で Myrica, Ericaceae 及び Empetrum がこれらに次ぐ. こうした組成からユニッ ト CT1-1 と同様にユニット CT1-2 は CT1- I 帯に属す ると考えられる.

3.3.2.3 ユニット CT1-4

ユニット CT1-4 は、落葉広葉樹の Alnus 及び Betula、 常緑針葉樹の Picea が優勢で、落葉広葉樹の Quercus、 Ulmus 及び Juglans / Pterocarya は 10%程度の産出率を 示し下位の層準に比べ高率である一方 Fagus は極めて 低率な花粉組成を示す. このような均一な組成から全 体が CT1- II 帯に相当するとした.

3.3.2.4 ユニット CT1-6

ユニット CT1-6 からは上部の土壌層より1 試料を分析した.その結果、常緑針葉樹の Cryptomeria が極め て高率を占め、落葉広葉樹の Quercus, Carpinus / Ostrya 及び Celtis / Aphananthe がこれに次ぎ Fagus はほと んど産出しない.また、Picea などの Pinaceae の針葉 樹は極めて低率であるという花粉組成を得た.これを CT1-III帯とする.

3.3.3 テフラ分析

千歳火砕流台地地下の地質についてはこれまで層序 学的な検討がほとんど行われてこなかったため,第11 図に示す4層準のテフラについて屈折率測定と主成分 化学分析(付表3)を行った.

深度 69.90 m(ユニット1)に挟在する最大径 15mm の白色軽石は,斜方輝石を含み,その屈折率(γ)は1.714 ~1.745(モードは1.743~1.744)と特徴的に高い値に モードをもつ.ガラス(軽石型ガラス主体)の屈折率 も1.509~1.511と比較的高い値を示す. K₂Oは0.81 ~0.97%と低く,火山フロント付近に給源がある可能 性が高い.このような特徴から,今後鍵層として追跡 される可能性を持つ.

深度 58.29m(ユニット 2) に挟在する最大径 2mm の 白色軽石は,軽石型ガラスと角閃石及び少量の斜方輝 石を含む.主成分化学組成は,K₂O が 0.77 ~ 1.26%と 低く,火山フロント上に位置する火山の噴出物である 可能性が高い.この K₂O 比の低いテフラは,調査地域 北方の千歳市祝梅地区の CH-B2 コアにおいて MIS 5e より下位の海成~河成層である深度 76.62 ~ 87.93m に 挟在するテフラ (産業技術総合研究所, 2007) に対比 される可能性がある.

深度 43.27m(ユニット 5) に挟在する最大径 2mm 程 度の軽石は,軽石型のガラスを多く含み,斜方輝石と 少量の角閃石を含む.ガラスの屈折率は 1.508 ~ 1.510 にまとまる.斜方輝石の屈折率 (γ)は 1.710 ~ 1.717 と 1.724 ~ 1.730 のバイモーダルを示す.角閃石の屈折率 (n 2)は 1.671 ~ 1.684 で 1.671 ~ 1.677 と 1.681 ~ 1.684 にモードがある.

深度 36.89m(ユニット 6) に挟在するスコリア混じり 軽石層は, ガラスの屈折率1.505 ~ 1.510(モードは1.507 ~ 1.508), 斜方輝石の屈折率(γ)は1.710 ~ 1.717を示す. K₂O は 2.6 ~ 2.8%前後で火山フロント近傍に噴出源を 求めることはできない.

4. 更新統の対比と編年

今回行ったボーリングでは対比・編年に適用可能な テフラはわずかしか得られなかったが,層相解析と花 粉分析から新たな知見が得られた.ここでは,3孔間(第 14図)及び周辺の層序ボーリングや丘陵の層序との対 比を試みる.

4.1 BT1 孔からみた古環境と古気候の変遷

ここでは最も下位の層準に達し、かつ Toya によっ て編年の基準が得られている BT1 コアから読み取られ る古環境と植生変遷をまとめる.まず Toya を含むユ ニット BT1-7 から対比について考える.

ユニット BT1-7 は Toya を挟有し, 下位のユニット BT1-6 と共に高海水準期に潮下帯で堆積したと考えら れる. その花粉組成は落葉広葉樹の *Quercus*, *Betula*, *Alnus* が高率を占める. これは当地域の MIS 5d ~ 5b 前後の植生を示すものと考えられる.

これらの下位に位置する明確な海成層であるユニッ

ト BT1-5 は潮間帯〜潮下帯の堆積物からなり,落葉広 葉樹の Betula, Alnus と落葉針葉樹の Picea が優勢で, 一方 Quercus は低率である.このことは本ユニットが MIS 5b ~ 5d(後述)より若干冷涼な高海水準期に堆積 したことを示す.酸素同位体変動とサンゴ化石の年代・ 標高からみて, MIS 7 の温暖期は MIS 5e や MIS 9 及び 11 と比較して海面が低かったと考えられる (Labeyrie et al.,2002)ことから,ユニット BT1-5 を MIS 7 に対比す ることができる.

ユニット BT1-3 は, Fagus の花粉化石を多産する 高海水準期の堆積物である.その比率は MIS 5e と考 えられるユニット BT1-6 と比較しても有意に高い. Fagus が優勢な花粉帯は,相対的に温暖で特に冬季 の降雪量の多い湿潤な環境を示すと考えられている. MIS 5e を凌駕する温暖な高海水準期としては MIS 9 な いし11 が挙げられる (Labeyrie et al., 2002).また,大 阪湾岸 (本郷, 2009) や関東平野周辺の各地 (本郷・水 野, 2009) において MIS 11 の海成層から温暖期を示す Cyclobalanopsis の多産層準が得られていることは,日 本列島においても MIS 11 が中期更新世では突出した 温暖期であったことを示す.このことから,ユニット 3 は MIS 11 の温暖期の堆積物である可能性が高い.

ユニット BT1-1 は最上部が逆帯磁していること,常 緑針葉樹の Picea と落葉広葉樹の Alnus が優勢であり, Fagus は極めて低率であるという特徴をもつ.後者の 特徴は,上位の海成層であるユニット BT1-3 と比較し て冷涼な気候下で堆積したことを示す.このことから, ユニット BT1-1 は MIS 13 以前の中期更新世の高海水 準期に堆積したと考えられる.なお,小田 (2005)のレ ビューによると中期更新世以降に 20 余りの地磁気エ クスカーションがすでに認められているが,このコア にみられる比較的短期の逆帯磁期は,そのうちの1つ に対応するものと考えてよい.

ユニットBT1-2は上下のユニットと比較して低 海水準期の地層であり、寒冷期に堆積したと考えられ る.

ユニット BT 1-4 は下部の砂主体の部分では生痕が 認められるものの,上方粗粒化し,上部には明らかに 河川性の礫質堆積物が含まれるようになる.このこと は一連の上方浅海化を示している.このことから BT1-ユニット4の下部は高海水準期を示すが,主部は次第 に海水準が低下していく時代に相当し,全体として MIS9 から MIS 8 に向かいつつある時代の堆積物であ る可能性がある.

4.2 YF1 孔と BT1 孔の対比及び編年

YF1 孔は BT 孔と同様に海岸平野に位置し、両者の 距離は約4.25km と近いため、両孔間で古植生に大き な違いはなかったと考えて議論を進める.

YF1 ではユニット YF1-7 以上の層準に支笏火山噴出物の2次堆積物に由来する軽石が多量に含まれること,

及びユニット YF1-6 が河川成堆積物と考えられること から,更新世の海成堆積物はユニット YF1-5 以下と考 えられる.

YF1-1 は落葉広葉樹の Betula, Alnus, 及び常緑針葉 樹の Picea が優勢で Fagus は極めて低率である点で, BT1 孔の花粉化石帯 BT1-Ⅲ帯(ユニット BT1-4 及び5 の主部)に類似する. ここでは上位に厚い礫層(ユニッ ト BT 1-4 上部, ユニット YF 1-2) に覆われるとい う共通性からユニット YF 1-1をユニット BT1-4 下部 に対比することができる.

ユニット YF1-3 は潮下帯~下部外浜の堆積物で,その上部から上位ユニット (ユニット YF1-4 ~ 5) は一連の上方浅海化を示す. このうちユニット YF1-3 下部は落葉広葉樹の Betula, Alnus に常緑針葉樹の Picea の混じる花粉組成を示し,上部はより温暖な気候を示す落葉広葉樹の Quercus を高率で産出する. 同様の傾向はユニット BT1-5 でも認められる. このことからユニット YF1-3 はユニット BT1-5 に対比される.

ユニット BT1-3 に対比される Fagus を多産する地層 は本孔では認められない.

4.3 CT1 孔と BT1 孔の対比及び編年

CT1 孔は BT1 孔の北北西 23.6km の,支笏火山と馬 追丘陵の中間に位置する. CT1 孔近くの過去 30 年間 の平均気温は苫小牧市内と比較して冬季で約 2℃,年 平均で約 1℃低い.また,CT1 孔は BT1 孔や YF1 孔よ り山地に近く,そこから飛来する花粉が多く混入する 可能性があるため,地域花粉分帯に基づく古植生の変 化傾向を重視して対比する.

ユニット CT1-1 ~ 2 では落葉広葉樹の Betula 及び Alnus, 常緑針葉樹の Picea が優勢な海成層である.ユ ニット CT1-4 と比較して Ericaceae, Empetrum に富 む. 特に後者は亜寒帯性の常緑針葉樹であり,ユニッ ト CT1-4 と比較してユニット CT1-1 ~ 2 が冷涼な気 候下で堆積したことを示す. このことから,ユニット CT1-1 はユニット BT1-5 に対比される.

ユニット CT1-4 は落葉広葉樹の Alnus, Betula 及び 常緑針葉樹の Picea, が優勢に含まれる海成層である. このような花粉組成は Quercus を多く含むユニット BT1-7 と比較すると若干冷涼な気候を示す分類群に富 む.しかし,上述した気候の違いや山地からの距離を 考慮すると,両孔における花粉組成の違いは両地点間 での気候のの違いを反映したものと考えられる.一方 ユニット CT1-4 が高海水準期の堆積物であることを考 慮すると,層相は異なるものの BT1-6(MIS 5e) に対比 することが妥当と考えられる.

なおユニット BT1-3 に対比される Fagus を多産する 地層は本孔では認められない.

4.4 周辺地域との対比及び編年

ここでは既往研究に示されている周辺地域の重要基

準ボーリング及び丘陵地域の層序とBT1 孔の層序の対 比・編年について検討する(第2表).

従来,石狩低地帯南部地域の中部〜上部更新統は, BT1 孔の北東2km地点の静川台地上で掘削されたSZ 孔の層序(近藤ほか,1984,1988)を模式層序として 対比・編年に用いられてきた(たとえば馬追団体研究 会,1987;北川ほか,1988など).また,BT1 孔の西 14.3km地点の苫小牧港西港で掘削されたTMK 孔(近 藤ほか,1996)は、勇払平野周辺の第四系層序ボーリ ングの中では最も深くに達しているもので,沈降の中 心に近い地点の層序を代表している可能性が高い.こ の2 孔の層序に加え,多くの地質学的研究が行われ てきた鵡川丘陵の層序(山田ほか,1981;星野ほか, 1982;馬追団体研究会,1983,1987など)とBT1 孔 を対比することにより、勇払平野周辺地域の層序を再 検討する.

4.4.1 SZ 孔と BT1 孔の対比

SZ 孔 (近藤ほか, 1984)の位置する静川台地は,反 射法地震探査(石油公団, 1996の SI95-4 及び SI95-5 測線)により,勇払海岸と比較して構造的に北上が りに隆起していることが示されている(石油公団, 1996).また,中部~上部更新統も静川台地は海岸沿 いと比較して系統的に高い場所に位置し,地殻変動に よって隆起していると考えられてきた(たとえば近藤, 1997;嵯峨山ほか,2008).SZ 孔は標高 20.16m より深 度 80m までオールコアで掘削され,層相と貝化石の記 載,テフラ分析,花粉分析及び古地磁気測定が行われ ている(近藤ほか, 1984).

SZ 孔と BT1 孔で確実に対比されるのは、下位より BT1-1 と SZ-I a 部層, BT1-2 と SZ-I b 部層, ユニッ ト BT1-3 と SZ-II 層及びユニット BT1-7 と SZ- VI層で ある (第15図).

ユニット BT1-1 ~ 3 と SZ I a 部層~ SZ-Ⅱ層を対 比する根拠は,次の 2 点である.

①ユニット BT1-3 と SZ- II 層は共に Fagus の花粉化 石を多産する.石狩低地帯周辺で Fagus を多産する層 準は後述するように1層準しか知られておらず,非常 に湿潤で温暖な高海水準期の堆積物という共通点から 対比できる.②ユニット BT1-3 の直下に当たるユニッ ト BT1-1上部(砂質部)からユニット BT1-2(砂礫主体) にかけて逆帯磁している.これは、SZ-II 層の直下に 位置する SZ- I a(砂質部)部層と SZ- I b(砂礫主体部) 部層の4層準中の3層準が逆帯磁していることと共通 する.

また, ユニット BT1-7と SZ- VI層は, ともに Toya (近藤ほか, 1984, 1988 などの Aafa-2)を含むことから, 両者は確実に対比できる.

次に, ユニット BT1-5 は主として海成層からなり, 下部で落葉広葉樹の Betula 及び常緑針葉樹の Picea を 高率に含み,上部では Picea が減少した分落葉広葉樹 の Quercus を高率に含むようになる. このような堆積 環境と花粉組成は SZ-IV層(近藤ほか, 1984, 1988) と良く似ており,ユニット BT1-5 と SZ-IV層は対比さ れる可能性が高い. これを考慮すると,必然的にユニッ ト BT1-4 と SZ-III層及びユニット BT1-5 と SZ-IV層 が対比されることになる. なお, SZ-IV層中における 気候変化を示す花粉群集の変化(近藤ほか, 1988;近 藤, 1997 など)は, MIS 7 における酸素同位体比の変 動と対応する気候変化を示すもの(たとえば Pisias et al.,1984)として説明できる.

この対比の問題点として、以下の2点が残される.

①近藤ほか(1984)は、SZ-I層が逆帯磁していることを根拠として同ユニットを下部更新統としており、本論の対比と異なった結論を導いている.

②近藤ほか(1988),五十嵐・北川(1992)はSZ-V層 より寒冷期の花粉群集を得たことから、同ユニットを SZ-IV層と一連の寒冷期に対比している.

①に関して、SZ-I層の下位に対比されるユニット BT1-1下部が正帯磁しており、かつ弱固結であること から、両者はブリュンヌ正磁極期の堆積物とみなすこ とができる.したがって、従来の対比を改めてこれら は中部更新統とみなすことができる.

②に関して, SZ-Vb部層は亜角礫を多く含み火山 灰質の基質を有すること(近藤ほか, 1984)から, BT 孔で対比されるユニットはなく,局所的な堆積物であ る可能性が高い. また, SZ-V a 部層は扁平な礫を多 く含むことや淘汰良好な中~細砂層を挟むこと(近藤 ほか, 1984), から上部外浜~前浜の堆積物である可 能性がある.また、SZ-Va部層からは花粉は得られ ておらず、この層準を寒冷期の堆積物と認定する根 拠はない. さらに, 完新世の地形発達過程を検討し た Moriwaki(1982) や池田ほか (1995) によると最終氷期 以降の勇払平野は沿岸流による砂礫州が溺れ谷を塞い で前進し、現在の海岸線までが埋め立てられたことを 明らかにした. 同様の現象は最終間氷期にも生じてい たと考えるのが自然である.このように考えるなら, SZ-Va部層が河川によるものではなく海流によって 発達した砂礫州をなしていた高海水準期の堆積物であ る可能性は高いといえる.この点について、今後オー ルコアボーリングによる検証が必要と考えられる.

4.4.2 TMK 孔と BT1 孔及び YF1 孔の対比

TMK 孔 (近藤ほか, 1996)の位置する苫小牧港西 港は,海岸沿いの反射法地震探査(佐藤ほか, 1998; Kato et al.,2004; 横倉ほか, 2012, 2013)及び地下水調 査孔の検討(山口, 1978)から,BT1 孔付近に軸をもち, 第四系が参加する勇払背斜の西翼に位置し,BT1 孔と 比較して第四系基底が低い位置に伏在すると考えられ ている(Kato et al.,2004).

両孔の間には第四系下部以深の参加する向斜が存在 し(Kato et al., 2004; 横倉ほか, 2012, 2013), その軸 部にあたる安平川河口付近には YF1 孔がある. この向 斜は第四系上部では認められず, 勇払背斜西翼の第四 系中部付近に不整合が存在する (Kato *et al.*, 2004; 横倉 ほか, 2012, 2013).

TMK 孔は,標高4.10mより深度158.50mまで掘削された地質研究ボーリングであり,層相記載,テフラ分析,古地磁気測定,珪藻分析,ナンノ化石分析及び軟体動物化石の同定が行われている(近藤ほか,1996).同時に標準貫入試験によるN値も計測されており,周辺地域の地盤調査ボーリング孔との対比に有用な資料を提供している.TMK 孔は下位から順にTM-0,TM-I・・・TM-VILと,9層(部層を含めると13部層)に区分されている(近藤ほか,1996).

TMK 孔と BT1 孔の間で確実に対比できるのは,共 に Toya(Aafa2)を挟有するユニット BT1-7 と TM- VI層 である.

次いで対比される可能性が高いのは, Quercus, Betula, Picea などの冷温帯性針広混交林相を示す花粉化石 を産する海成層という共通点をもつユニット BT1-5 及 び YF1-3 層と TM- IV a ~ TM- IV bL 部層である.また, BT1-5 の粘性土の N 値が 20 前後, TM- IV a の粘性土 の N 値が 23 ~ 30(近藤ほか, 1996)と似た値を示し, かつユニット BT1-5 に比べ TM- IV a ~ TM- IV bL 部層 が深い深度に埋没していることを考慮すると, 両者を 対比することは妥当と考えられる.

ユニット YF1-1 と TM-0 層は, ともに Quercus, Betula, Alnus, Picea に加え少量の Fagus を産する点で共 通性があり,対比される可能性がある.しかし,両孔 ともこれらのユニットの上部を採取したのみであるた め,対比の根拠は薄弱である.

ユニット BT1-3 に相当する Fagus を多産する層準は TMK 孔には認められない. ただし TM-0 層は Fagus を 産出し,かつ1 試料が逆帯磁していることから両者が 対比される可能性も否定できない.

以上のように海成層を基準とした3孔の対比は,第 16回のようにまとめることができる.しかし,ユニッ トBT1-5・YF1-3及びTM-IVa~TM-IVbL部層より も下位の層準については未解決の問題が多く,今後の 検討課題である.

4.4.3 周辺地域の中部~上部更新統との対比と年代

本調査地域の東に当たる馬追丘陵南部~鵡川丘陵に かけては断片的ながら中部~上部更新統が分布し,テ フラ及び花粉化石や貝化石が記載されている.また, 本調査地域の東に当たる馬追丘陵南部~鵡川丘陵にか けては断片的ながら中部~上部更新統が分布し,テフ ラ及び花粉化石や貝化石が記載されている.また,調 査地域長沼低地帯周辺では層序ボーリングが掘削さ れ,地下地質が解明されてきている.海成層を中心と して,これらと本調査で確認された堆積物の対比を試 みる.

4.4.3.1 ユニット BT1-3

前述のとおり, ユニット BT1-3 は Fagus を特徴的に 多く含む, 海成中部更新統である.

馬追丘陵南部~鵡川丘陵の中部更新統は山田ほ か(1981), 星野ほか(1982), 馬追団体研究会(1983, 1987)によって記載されている.これらによると、新 第三系を不整合に覆って早来層(山田ほか, 1981)が 丘陵西部に分布する. 早来層は海成粘土を主体とし, 上部は生痕化石を含む砂層に移化し、全体に数層の泥 炭層及びテフラを挟有する(山田ほか, 1981;馬追団 体研究会, 1983). 山田ほか(1981)によると、早来層 は多量の Fagus のほか, Quercus, Juglans などの落葉 広葉樹と Cryptmeria(常緑針葉樹) 及び Abies(落葉針葉 樹)の花粉化石を多く産出する.馬追団体研究会(1983) は早来層より現在の北海道には棲息しない暖温水系の 貝化石 Rapana venosa, Arca boucardi, Cyclina orientalis の産出を報告している. このように Fagus を特徴的に 多く含むという花粉組成はユニットBT1-3と共通して おり、両者を対比することができる.赤松(1987)は 本層中の貝化石群集から当時は極めて温暖な気候に あり, 関東の地蔵堂層に対比した(赤松, 1988). 地 蔵堂層は MIS 11(約 390~420ka: Petit et al., 1999) に 相当する地層である(町田ほか、1980:町田・鈴木、 2000).

なお、早来層に対比される黒松内低地帯の蕨岱層の フィッショントラック年代 (0.4±0.08Ma: 矢野、1983; 赤松、1988) や馬追丘陵北部の山根川層 (赤松・鈴 木、1992)の ESR 年代 (287 ~ 354ka: 北海道開発局、 1994; 能條ほか、2008)は MIS 11 と同等か若干若干新 しい年代を示す. しかし、これらの物理年代測定法の 誤差を考慮すると MIS 11 に対比されることを否定す る根拠にはならないと考える.

4.4.3.2 ユニット YF1-1

ユニット YF1-1 は基底部を確認していないため、本研究では実態をつかみ切れていない.しかし、このユニットは、BT 孔や SZ 孔では確認できなかったことから沈降域と海岸沿いの一部にのみ分布している可能性が高く、ユニット BT1-3 ~ BT1-5 間に位置する堆積物と考えられる.このような堆積物は、調査地域の低地では今のところ TMK 孔(近藤ほか、1996)の TM-0 以外では確認されていないが、馬追丘陵縁辺部と鵡川以東の海岸沿いに分布する最高位の海成段丘堆積物(北海道立地質研究所、2001の第1段丘堆積物及び平川、2001の mT9)が、本ユニットに対比される可能性をもつと考えられる.

4.4.3.3 ユニット BT1-5

BT1-5 は、上位の海成層である BT1-6 及び7 下部と 比較してやや冷涼な気候を示す落葉広葉樹の花粉化石 を多く含む海成堆積物である.同様の古植生(古気候) を示す堆積物は、栗沢丘陵(馬追丘陵北方)の段丘2 堆積物(北海道立地質研究所:2001)や、長沼低地東 部・南長沼地下の深度10~60mに分布する堆積物中 の海成層、特に深度57~58m付近の生痕化石含有層 (下川ほか、1993)に対比可能である.また、鵡川以 東の海岸沿いに分布する高位海成段丘面(mT7:平川, 2001)と対比される可能性をもつ.

ユニット BT1-5 に対比される CT1-1 ~ 2 は軽石質 テフラを少なくとも 2 層挟有し,その化学組成はいず れも K_2O に乏しいという特徴をもつ.このような化学 組成と平野地下の層位から,長沼低地帯南部・千歳市 祝梅地区の CH-B2 孔 (産業技術総合研究所,2007)の 深度 76.62 ~ 87.93m に伏在する地層と対比される可能 性がある.

これらの地層は層序及び古気候から MIS 7 に同定可 能であり、その年代は Martinson *et al.*(1987) より 190 ~ 240ka と算定される.

4.4.3.4 ユニット BT1-6~7

ユニットBT1-7下部にはToyaテフラが挟在し、そ の下位のユニット BT1-6 は Quercus に富む冷温帯性落 葉広葉樹を主体とする花粉化石群集を含む海成堆積物 である.このような層位・古環境と、山田ほか(1981) 及び馬追団体研究会(1983)の層相記載,花粉分析及び 貝化石群集の分析結果に基づいてユニットBT1-6が厚 真層 (山田ほか, 1981) に, ユニット BT1-7 が本郷層 (山 田ほか, 1981)に、それぞれ対比される. 同様に星野 ほか(1982)の花粉分析より鵡川丘陵の下安平層(藤田・ 石狩低地帯研究会, 1967) 上部層にユニット BT1-6 が, 汐見層 (矢野・石狩低地帯研究会, 1967) 下部層にユニッ トBT1-7にそれぞれ対比される.厚真層と本郷層に対 比される地層は Toya を鍵層として石狩低地帯周辺で 広範囲にわたって追跡されている(たとえば外崎・馬 追団体研究会, 1982;五十嵐·北川, 1992;北海道立 地質研究所, 2001). また鵡川東方の海成段丘面におい て柳田(1991)により Tova テフラと中位海成段丘堆積 物(平川, 2001のmT5e面)の層位関係が明らかにさ れている.

さらに、石狩低地地下においては嵯峨山ほか(2010) により調査地域北方の石狩平野中部の地下において Toya テフラを複数個所で確認し、この層準の堆積物が 堆積面を形成して沖積層下に分布する可能性を示して いる.北海道立地質研究所(2001)、産業技術総合研究 所(2007)などの層序ボーリングでも Toya とその下位 の海成堆積物が確認されており、ユニット BT1-6~7 に対比される地層は石狩低地帯周辺に広く分布すると 考えられる.

これらの年代について,厚真層基底の年代は MIS 5e の年代から 125ka,本郷層基底の年代は同層下部に挟 在する Toya が MIS 5d にあたる 112 ~ 115 ka に降下 と考えられること(町田・新井, 2003)から,112 ~ 115ka と考えられる.また,本郷層は MIS 5a に降下した(町田・新井, 2003)Mpfa3(Kt-6)に覆われる(山田ほか, 1981;星野ほか, 1982)ことから,その堆積は MIS 5b ごろに終了したと考えられる.

謝辞:本調査を行うにあたって,北海道立総合研究機 構の大津 直博士には多くのご助言・情報をいただい た. 苫小牧市博物館の荒川忠宏館長には現地の情報を 多くいただいた. 産業技術総合研究所の水野清秀平野 地質研究グループ長の適切な指摘のおかげで本論は大 きく改善された.株式会社苫東,苫小牧市及び陸上自 衛隊東千歳駐屯地にはボーリング用地を借用させてい ただいた. 苫小牧市市民生活部危機管理室には用地借 用等にあたって便宜を図っていただいた.明治コンサ ルタント株式会社の小板橋重一専門部長及び中村清 朗主任技師,株式会社レアックスの向井和行主任技 師, 佐高裕行主任技師には良質なコア採取に尽力して いただいた.株式会社パレオ・ラボの藤根 久博士に は珪藻分析をしていただいた.株式会社古澤地質の古 澤 明博士にはテフラ分析を行っていただいた上,標 準試料の測定値をご提供いただくなど多大なご教示を いただいた. 産業技術総合研究所の國本節子氏と朝日 航洋株式会社の弓真由子氏には含水率と粒度の測定及 びコアの処理全般に関して大変お世話になった.以上 の方々に厚く御礼申し上げます.

文 献

- 赤松守雄(1987)石狩低地帯周辺の更新世温暖水系 貝化石群集の層準とその特性.地質学雑誌,93, 809-821.
- 赤松守雄 (1988) 北海道における中期更新世海進とその背景.地質学雑誌,94,173-186.
- 赤松守雄・鈴木明彦 (1992) 石狩低地帯周辺丘陵の鮮 新 - 下部更新統の層序と古環境.北海道開拓記念 館研究年報, 20, 1-30.
- 安藤一男 (1990)淡水産珪藻による環境指標種群の 設定と古環境復元への応用. 東北地理, 42, 73-88.
- 藤田郁男・石狩低地帯研究会 (1967) 石狩低地帯南部 の第四系 - 厚真~日高門別付近の海成層について -. 北海道第四紀研究会連絡誌、14、1-7.
- 古澤 明(1995)火山ガラスの屈折率測定・形態分類 とその統計的な解析.地質学雑誌, 101, 123-133.
- 古澤 明(2003)洞爺火山灰降下以降の岩手火山のテ フラの識別. 地質学雑誌, 109, 1-19.
- 伊藤谷生 (1999) 北海道におけるアクテイブテクトニ クスの現フェーズはいつ始まったのか? 月刊地 球, 21, 608-613
- 平川一臣 (2001)4.1.3. 北西部・中央部 (宗谷岬 襟裳岬). 小池一之・町田 洋編「日本の海成段丘アトラス」

20-22. 同 CD[日本 I 北海道・東北]. 東京大学 出版会.

- 平川一臣・越後智雄 (2002) 石狩低地帯南部・馬追丘 陵西縁の伏在活構造にかかわる地形の変形.活断 層研究, 22, 36-66.
- 北海道開発局 (1994) 千歳川放水路計画に関する技術 報告. 300p.
- 北海道立地質研究所 (2001) 北海道活断層図 No.3 石狩 低地東縁断層帯 活断層図とその解説. 北海道, 157p.
- 本郷美佐緒 (2009) 大阪堆積盆地における中部更新統 の花粉化石層序と古環境.地質学雑誌, 115, 64-79.
- 本郷美佐緒・水野清秀 (2009) 埼玉県さいたま市で掘 削された深作A-1ボーリングコアの花粉化石群集. 地質調査研究報告, 60, 559-579.
- 星野フサ・木村方一・小林寿美枝・及川淑子・斎藤 裕子・遠山容子 (1982) 石狩平野南東部に分布する 汐見層および下安平層の花粉学的研究. 第四紀研 究, 21, 23-40.
- 池田国昭・羽坂俊一・村瀬 正 (1995) 北海道勇払平 野の完新統分布と地形発達.地質調査所月報,46, 283-300.
- 五十嵐八枝子・北川芳男 (1992) 北海道・石狩低地帯 の最終間氷期堆積物.第四紀, 24,49-59.
- Kato,N. ,Sato,H., Orito, M., Hirakawa, K., Ikeda, Y. and Ito, T. (2004) Has the plate boundary shifted from central Hokkaido to the eastern part of the Sea of Japan?. *Tectonophisics*, **388**, 75-84.
- 北川芳男・五十嵐八枝子・吉田充夫・輿水達司 (1988) 北海道石狩低地周辺の更新統.地質学論集, 30, 13-23.
- 国土地理院 (1997) 数値地図 50 mメッシュ (標高)日本 Ⅱ.国土地理院.
- 小松原純子・小松原 琢 (2012) ボーリングによる勇 払平野沿岸の活構造調査. 平成 23 年度沿岸域の 地質・活断層調査研究報告,産業技術総合研究所 地質調査総合センター速報, no. 59, 101-108.
- 近藤 務(1997) 石狩低地帯南東・静川台地とその周 辺域の第四系 - 特に最終間氷期の相対的海水準変 動および古地理変遷 -. 川村信人・岡 孝雄・近 藤 務編「加藤誠教授退官記念論文集」297-315.
- 近藤 務・五十嵐八枝子・吉田充夫・赤松守雄 (1984) 北海道苫小牧市静川ボーリングコアにみられる第 四系.第四紀研究, 22, 313-325.
- 近藤 務・五十嵐八枝子・嵯峨山積(1988)北海道静 川台地の中〜上部更新統 - 特に最終間氷期中の寒 冷期および相対的海水準変化の検討 -. 地質学雑 誌,94,343-359.
- 近藤 務・五十嵐八枝子・吉田充夫・井上俊和・平 信行・山崎正道・岡村 聰・前田寿嗣・嵯峨山積・

小松原 琢・小松原純子・田辺 晋・本郷美佐緒・植木岳雪・中島 礼・石原武志

安井 賢(1996)石狩低地帯最南部地下の第四系-特に最終間氷期の相対的海水準変化の検討-.地 質学雑誌, 102, 312-329.

- 小杉正人 (1988) 珪藻の環境指標種群の設定と古環境 復元への応用. 第四紀研究, 27, 1-20.
- Labeyrie, L., Cole, J., Alverson, K. and Stocker, T. (2002) The history of climate dynamics in the late Quaternary. Alverson, K. *et al.*, (eds.) *Paleoclimate, global change and the future*. 33-61, Springer.
- 町田 洋・鈴木毅彦 (2000)1-4 地形地質の編年. 貝 塚爽平ほか編「日本の地形4 関東・伊豆小笠原」, 東京大学出版会, 22-36.
- 町田 洋・新井房雄 (2003) 新編日本火山灰アトラス [日本列島とその周辺].東京大学出版会.東京大 学出版会,336p.
- 町田 洋・新井房雄・杉原重夫(1980)南関東と近畿 の中部更新統の対比と編年 - テフラによる一つの 試み -. 第四紀研究, 19, 233-261.
- Marinson, D. G., Pisias, N. G., Hays, J.D., Imbrie, J., Moore, T. C. and Shackleton, N.J. (1987) Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy, *Quaternary Research*, 27, 1-29.
- Moriwaki,H. (1982) Geomorphic development of Holocene coastal plains in Japan. *Geogr. Rept. Tokyo Metropolitan Univ.*, **17**, 1-42.
- 中田 高・今泉俊文 (2002) 活断層詳細デジタルマッ プ 2002.東京大学出版会.
- 能條 歩・金川和人・星野フサ・岩見沢団体研究グルー プ (2008) 北海道中央部石狩低地帯東縁長沼地域 の中〜上部更新統と古環境.地球科学, 62, 307-323.
- 小田啓邦 (2005) 頻繁に起こる地磁気エクスカーショ ン-ブルネ正磁極期のレビュー.地学雑誌, 114, 174-193.
- Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, M., Ritz, C., Saltzman, E. and Stieveard, M., (1999)Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. *Nature*, **399**, 729-736.
- Pisias, N.G., Martinson, D.G., Moore, T.C., Shackleton, N.J. Prell, W., Hays, J. and Boden, G. (1984) High Resolution Stratigrapic Correlation of Benthic Oxygen Isotope Records Spanning the Last 300,000 Years. *Marine Geology*, **56**, 119-136.
- 嵯峨山積・荒川忠宏・亀山聖二・佐々木宏志 (2008)
 北海道勇払平野の沖積層(最上部更新統~完新統)
 の層序と古環境.地球科学, 62, 387-401.
- 嵯峨山積・外崎徳二・近藤 務・岡村 聰・佐藤公

則 (2010) 北海道石狩平野の上部更新統〜完新統の 層序と古環境.地質学雑誌, 116, 13-26.

- 産業技術総合研究所 (2007)「基盤的調査観測対象断 層帯の追加・補完調査」成果報告書 No.H18-8. 石 狩低地東縁断層帯の活動性および活動履歴調査.
- 産業技術総合研究所地質調査総合センター(2009) 20万分の1シームレス地質図 DVD 版.
- 佐藤明夫・鈴木正章・遠藤邦彦 (2010) 北海道南部白 老平野の沖積層に含まれる海浜砂礫の起源につい て.日本大学文理学部自然科学研究所研究紀要, 45,127-132.
- 佐藤比呂志・平川一臣・池田安隆・折戸雅幸・井川 猛 (1998) 苫小牧市勇払の伏在活断層.石油技術協 会誌, 63, 323-324.
- 石油公団 (1996) 平成7年度国内石油・天然ガス基礎 調査海上基礎物理探査「胆振沖浅海域」調査報告 書、35p.
- 下川浩一・佃 栄吉・奥村晃史 (1993) 北海道馬追丘 陵における後期更新世の地殻変動とその速度につ いて.日本地質学会第100年学術大会講演要旨, 504.
- 高清水康博・嵯峨山積・仁科健二・岡 孝雄・中村 有吾・西村裕一 (2007) 北海道胆振海岸東部から確 認された 17 世紀の津波堆積物. 第四紀研究, 46, 119-130.
- 田邉 晋・小松原 琢・石原武志・中島 礼 (2013) 北 海道千歳市柏台におけるボーリングコア堆積物 (GS-CT-1)の岩相層序.平成24年度沿岸域の地質・ 活断層調査研究報告,産業技術総合研究所地質調 査総合センター速報, no.62, 29-35.
- 馬追団体研究会(1983)北海道中央部馬追丘陵南東の 中・上部更新統-2 つの海進について.地球科学, 37, 8-21.
- 馬追団体研究会 (1987) 石狩低地帯東南部の更新統層 序と古地理の変遷.地球科学, **41**, 303-319.
- 山田悟郎・和田信彦・赤松守雄(1981)苫小牧東方地 域の中・上部更新統.地下資源調査所報告, 52, 31-55.
- 山口和雄・阿部 進・横倉隆伸・岡田真介 (2013) 馬 追丘陵周辺の反射法データ解析. 平成 24 年度沿 岸域の地質・活断層調査研究報告. 産業技術総合 研究所地質調査総合センター速報, no.62, 37-46.
- 山口久之助 (1978) 苫小牧東部の地下水について.北 海道立地下資源調査所報告, **50**, 133-159.
- 矢野牧夫(1983) 黒松内低地帯南部の中・上部更新統 と古環境. 日本地質学会北海道支部・日本応用地 質学会北海道支部学術シンポジウム講演要旨集, 27-29.
- 矢野牧夫・石狩低地帯研究会 (1967) 石狩平野の第四 系から産出する植物遺体の概観.第四紀研究, 7, 41-48.

- 横倉隆伸・山口和雄・岡田真介 (2012) 石狩低地東縁 断層帯南部における反射法地震探査. 平成 23 年 度沿岸域の地質・活断層調査研究報告,産業技 術総合研究所地質調査総合センター速報, no.59, 59-74.
- 横倉隆伸・山口和雄・岡田真介 (2013) 石狩低地東縁 断層帯南部における反射法地震探査 - 苫小牧 - む かわ測線西部における稠密発震データの解析.平 成 24 年度沿岸域の地質・活断層調査研究報告, 産業技術総合研究所地質調査総合センター速報, no.62, 47-61.

(受付:2013年9月3日;受理2013年12月3日)

- 第1図 石狩低地帯の地形と活構造の分布及び層序ボーリング 地形は国土地理院(1997)数値地図 50 mメッシュ(標高)日本 I を使用.活断層は中田・今泉(2002) を改変.
- Fig. 1 Geomorphology of the Ishikari Lowland, active structures and stratigraphic drilling sites Topology is after 50-m-mesh Digital Elevation Map of Japan I (Geographical Survey Institute, 1997). Active structures are modified from Nakata and Imaizumi (2002).

勇払平野と支笏火砕流台地地下の上部第四系層序ボーリング

(A) BT1

GH=T.P.+3.50m

(B) YF1 42° 37′ 29.5″ N GH=T.P.+1.74m 苫小牧市勇払 1-2 地形図は 1:25,00

苫小牧市弁天地内 地形図は 1:25,000「上厚真」図幅 1km (B) YF1 42°37'29.5″N 141°44'16.1″E GH-TP+174m

42° 36' 56.02" N 141° 47' 17.49" E

苫小牧市勇払 1-2 地形図は 1:25,000「勇払」図幅 1km

(C) CT1
42°49′01.3″N 141°42′05.3″E
GH=16.02m
千歳市柏台 1390番2
地形図は 1:25,000 地形図「千歳」図幅
1km

- 第2図 ボーリング掘削地点.
- 基図は国土地理院発行 1/25,000 地形図「上厚真」,「勇払」及び「千歳」を使用. Fig. 2 Localities of drilling sites.

Geographic map is based on "Kamiatsuma", "Yufutsu" and "Chitose" published by Geographical Survey Institute.

第3図 ボーリングコア BT1 の柱状図,年代,粒度組成分布及び古地磁気極性. Fig. 3 Columnar section, dating, grain-size components and magnetic polarity of BT1

- 第4図 ボーリングコア BT1 の代表的な堆積相の写真.コア上下の数字と左端のスケールは深度(m)を示す.
 軟X線写真がある層準についてはコア写真の右側に並べた.15~16m,39~40m,70~71mは礫層の典型的なものを深度ごとに示したもので,いずれも granule から pebble サイズ,最大径は4cm 程度の亜円礫からなり, 礫支持で比較的淘汰がよい.29~30m,56~57m,76~77mは細粒層の典型的なもの深度ごとに示している.
 いずれも泥〜細粒砂からなり,生痕が多く見られ,貝殻片を含む.19.32~19.33mの細粒テフラ層はガラスの主成分分析と屈折率測定により Toya テフラであることが確認された.
- Fig. 4 Typical sedimentary facies in BT1. Figures above, below and left side of the cores are depth in meters. Some softex photos are arranged on the right side. 15 ~ 16 m, 39 ~ 40 m and 70 ~ 71 m photos show typical gravel layers, composed of subrounded relatively well-sorted, clast-supported granule to pebble, up to 4 cm diameter. 29 ~ 30 m, 56 ~ 57 m, 76 ~ 77 m photos show typical fine layers, composed of mud to fine-grained sand, including trace fossils and shell fragments. The layer of 19.32 ~ 19.33 m is a volcaniclastic one, identified as Toya tephra based on main component analysis and refractive index of volcanic glass.

5%以上を占める分類群を表示.

Fig.5 Diatom diagram of BT1 Taxa which account over 5% are shown.

勇払平野と支笏火砕流台地地下の上部第四系層序ボーリング

第6図 BT1の花粉分析結果 Fig.6 Pollen diagram of BT1

第7図 ボーリングコア YF1 の柱状図,年代,粒度組成分布及び古地磁気極性. Fig. 7 Columnar section, dating, grain-size components and magnetic polarity of YF1

- 第8図 ボーリングコア YF1 の代表的な堆積相の写真. 詳細は第4図に準ずる. 深度 10~11 m, 42~43 m, 75~76 m は 礫層の典型的なものを深度ごとに示したもので,いずれもほとんどの礫径が1 cm 以下で, 礫支持で淘汰がよい亜円礫からなる. 18~19 m, 57~58 m はどちらも極細粒砂と泥の互層が生痕で撹乱 されている. 砂層中にはラミナが残っていることもある. 36.3~36.4 m にはカキの貝殻片が含まれている.
- Fig. 8 Typical sedimentary facies in YF1. Detailes are the same as Fig. 4. 10 ~ 11 m, 42 ~ 43 m and 75 ~ 76 m photos show typical gravel layers, composed of subrounded, relatively well-sorted, clast-supported granule to pebble, mostly up to 1 cm. 18 ~ 19 m and 57 ~ 58 m photos show typical fine layers, composed of alternations of mud and very fine-grained sand, including shell fragments, disturbed by trace fossils. Laminas remain in sandy parts in some cases. 36.3 ~ 36.4 m contains Ostrea fragments.

Fig.9 Diatom diagram of YF1

Taxa which account over 5% are shown.

第10図 YF1の花粉分析結果 Fig.10 Pollen diagram of YF1

第11図 CT1 コアの柱状図と含水率

第12図 ボーリングコア CT1 の代表的な堆積相の写真

(a) 深度 68.0 ~ 67.5 m. ユニット1. シルト質な極細粒砂層. 白く点在するのは軽石 (b) 深度 63.6 ~ 63.1 m. ユニット 2. 塊状なシルト層. (c) 深度 60.6 ~ 60.1 m. ユニット 2. 砂泥互層. (d) 深度 56.6 ~ 56.1 m. ユニット 2. 中粒砂層. (e) 深度 52.6 ~ 52.1 m. ユニット 3. 礫層. 上部において貝殻片がみられる. (f) 深度 47.9 ~ 47.4 m. ユニット 4. 砂泥互層. (g) 深度 40.7 ~ 40.2 m. ユニット 5. 礫層と中粒砂の互層. (h) 深度 37.9 ~ 37.4 m. ユニット 6. 軽石層. スケールバーは 10 cm. Fig. 12 Typical sedimentary facies in CT1. Detailes are the same as Fig. 4. (a) Depth in core: $68.0 \sim 67.5$ m. Unit 1. Silty very fine sand. Pumice scatters. (b) Depth in core: $63.6 \sim 63.1$ m. Unit 2. Massive silt. (c) Depth in core: $60.6 \sim 60.1$ m. Unit 2. Sand–mud alternation. (d) Depth in core: 56.6 \sim 56.1 m. Unit 2. Medium sand. (e) Depth in core: 52.6 \sim 52.1 m. Unit 3. Pebble. (f) Depth in core: 47.9 \sim 47.4 m. Unit 4. Sand–mud alternation. (g) Depth in core: 40.7 \sim 40.2 m. Unit 5. Alternation of pebble and medium sand. (h) Depth in core: 37.9 \sim 37.4 m. Unit 6. Pumice of pyroclastic deposits. Scale bar, 10 cm.

小松原 琢・小松原純子・田辺 晋・本郷美佐緒・植木岳雪・中島 礼・石原武志

第15図 BT1 孔と SZ 孔の対比と編年

SZ 孔の層序は近藤ほか (1984) による.

Fig.15

Correlation and chronology of BT1 and SZ cores. Stratigraphy of the SZ core is after Kondo *et al.*, (1984)

第16図 BT1 孔, YF1 孔及び TMK 孔の対比と編年 TMK 孔の層序は近藤ほか (1996) による.

Fig.16 Correlation and chronology of BT1, YF1 and TMK cores. Stratigraphy of the TMK core is after Kondo *et al.*,(1996).

Core	Depth	Elevation	Sample	Laboratory	Conventional Age	Dated	
	(m)	(m)	No.	No.	(y BP, 1std. dev.	Material	
BT1	3.91	-0.41	BT1-0391	Beta-312409	1260 ± 30	plant	
	7.76	-4.26	BT1-0776	Beta-304570	6870 ± 40	plant	
	17.30	-13.80	BT1-1730	Beta-311294	24350 ± 110	plant	
	17.50	-14.00	BT1-1750	Beta-304571	42970 ± 470	plant	
	26.03	-22.53	BT1-2603	Beta-304572	39940 ± 420	plant	
	34.39	-30.89	BT1-3439	Beta-304573	> 43500	plant	
	47.42	-43.92	BT1-4742	Beta-304574	> 43500	plant	
	51.57	-48.07	BT1-5157	Beta-304575	39040 ± 330	plant	
YF1	4.10	-2.36	YF1-0410	Beta-317052	1290 ± 30	plant	
	4.20	-2.46	YF1-0420	Beta-317053	1400 ± 30	plant	
	17.58	-15.84	YF1-1758	Beta-317054	6150 ± 40	plant	
	21.10	-19.36	YF1-2110	Beta-317055	6260 ± 40	plant	
	27.68	-25.94	YF1-2768	Beta-318706	10510 ± 50	plant	
	29.70	-27.96	YF1-2970	Beta-362503	8180 ± 40	plant	
	36.40	-34.66	YF1-3640	Beta-362504	9500 ± 40	shell	
	38.96	-37.22	YF1-3896	Beta-362505	9290 ± 50	plant	
	39.05	-37.31	YF1-3905	Beta-362506	9480 ± 50	plant	

第1表 ボーリングコア BT1 及び YF1 の放射性炭素同位体比年代測定結果. Table 1 Radiocarbon ages in BT1 and YF1.

勇払平野と支笏火砕流台地地下の上部第四系層序ボーリング

第2表	周辺地域との対比及び編年
Table 2	Correlation and chronology of BT1 and surrounding area

Core BT1 VF1 CT1 SZ TMK Age, tephra and characteristic pollen assemblage Age, tephra and chara tephra assemblage	Region	Yufi	utsu Plain	Shikotsu Pyroclastic Flow	Shizukawa Hills	Tomakomai West Port	Mukawa Hills		Umaoi Hills	Hidaka Coast	Ago, tophra and	
B This study Kondo <i>et</i> <i>al.</i> (1984) (modified in this study) Yamada <i>et</i> <i>al.</i> (1996) (modified in this study) Yamada <i>et</i> <i>al.</i> (1996) (modified in this study) Yamada <i>et</i> <i>al.</i> (1982) Geological Survey of Hirakawa (2001) Discussion (2001) Discussion (2001) <thdiscu< td=""><td>Core</td><td>BT1</td><td>YF1</td><td>CT1</td><td>SZ</td><td>ТМК</td><td colspan="2"></td><td></td><td></td><td>ge</td></thdiscu<>	Core	BT1	YF1	CT1	SZ	ТМК						ge
BT1-10 YF11, 12 SZ-WII TM-WII 1290±30(YF1-11) 1420±30(YF1-11) 1410±30(YF1-11) 1410±30(YF1-11) 1410±30(YF1-11) 1410±30(YF1-11) 1410±30(YF1	Reference		This study		Kondo <i>et al.</i> (1984) (modified in this study)	Kondo <i>et</i> <i>al</i> . (1996) (modified in this study	Yamada <i>et</i> <i>al.</i> (1981) Uma−oi Collaborative Research Group(1983)	Hoshino <i>et</i> <i>a</i> I.(1982)	Geological Survey of Hokkaido (2001)	Hirakawa (2001)	characteristic pollen assemblage	MIS Sta
BT1-9 YF1-9,10 YF1-9,10 YF1-9,10 Image: Constraint of the product	gical Unit	BT1-10	YF11, 12		SZ-VIII	ТМ−₩Ш					1290±30(YF1-11) 1420±30(YF1-11)	
Image: second		BT1-9	YF1-9,10								1260±30(BT1-9) 6210±40(YF1-9) 6260±40(YF1-9) 6870±40(BT1-9)	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			YF1-7,8								8180±40(YF1-7) 9500±40(YF1-7) 9290±50(YF1-7) 9480±50(YF1-7)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		BT1-8	YF1-6				terrace		Т5	fT2	24350±110(BT1-8)	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				CT1-6	SZ-VII	TM-VII	deposits		Т4	fT4 mT5a	Shikotsu Pyroclastic Deposits	5a~3
BT1-6 CT1-4 SZ-Va TM-V Atsuma Formation Shimoabira Formation TO mT5e fT5e mT5e fT5e 5e YF1-4, 5 CT1-3 Tm-IVbU Tm-IVbU 6 6 BT1-5 YF1-3 CT1-1, 2 SZ-IV TM-IVbL TM-IVa 7 6 BT1-4 YF1-2 SZ-IV TM-IT TM-I TM-IVa 7 Cool-temperate pollen assemblage Low-K tephras 7 BT1-4 YF1-2 SZ-II TM-0 TM-0 1 8? BT1-3 FT1-3 SZ-II TM-0 Hayakita Formation mT1 Fagus abundant 11		BT1-7	_	CT1-5	SZ-VI	TM-VI	Hongo Formation Atsuma Formation	Shiomi Formation Shimoabira Formation	Т3	mT5c fT5c	Toya and Aafa tephra group	5d∼b
No. YF1-4, 5 CT1-3 Tm-IVbU General content General conten General conten General		BT1-6		CT1-4	SZ−Va	TM-V				mT5e fT5e		5e
Š BT1-5 YF1-3 CT1-1, 2 SZ-IV TM-IVbL TM-IVa BT1-4 YF1-2 SZ-II TM-III TM-II TM-I TM-III TM-II TM-III TM-II TM-III TM-III RT1-1 RT1-1 RT1-1 RT1-1 RT1-1 RT1-1 RT1-2 RT1-2 RT1-1 RT1-1 </td <td>olos</td> <td></td> <td>YF1-4, 5</td> <td>CT1-3</td> <td></td> <td>Tm−IVbU</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>6</td>	olos		YF1-4, 5	CT1-3		Tm−IVbU	_					6
BT1-4 YF1-2 SZ-II TM-II TM-II TM-I BT1-3 SZ-II TM-0 BT1-2 SZ-II Hayakita Formation	Ö	BT1-5	YF1-3	CT1-1, 2	SZ-IV	TM−IVbL TM−IVa			Т2	mT7	Cool-temperate pollen assemblage Low-K tephras	7
YF1-1 TM-0 T1 mT9 9? BT1-3 SZ-II Hayakita Formation mT11 Fagus abundant 11		BT1-4	YF1-2		SZ-Ⅲ	ТМ-Ш ТМ-Ц ТМ-І						8?
BT1-3 SZ-II Hayakita Formation mT11 Fagus abundant 11			YF1-1	-		TM-0	-		Т1	mT9		9?
BT1-2 122		BT1-3			SZ− II		Hayakita Formation			mT11	<i>Fagus</i> abundant	11
S7-I 12		BT1-2			S7- I							12?
BT1-1 13?		BT1-1				-						13?