反射法地震探査による関東平野中央部の浅部地下構造

Shallow subsurface structure in the central Kanto plain by seismic reflection surveys

山口和雄¹·伊藤 忍¹·加野直已¹·横倉隆伸¹· 住田達哉¹·大滝壽樹¹·牧野雅彦¹ Kazuo Yamaguchi¹, Shinobu Ito¹, Naomi Kano¹, Takanobu Yokokura¹, Tatsuya Sumita¹, Toshiki Ohtaki¹ and Masahiko Makino¹

¹ 地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation)

Abstract: We carried out high resolution seismic reflection surveys to reveal subsurface structure down to 500m deep in the central Kanto plain along six survey lines 57 km long in total. Four survey lines stand in a line and cross the survey area from northeast to southwest. Another two survey lines cross the above lines in the Kazo lowland and Arakawa lowland. Reflectors corresponding to depths of the Shimosa group base, Joetsu tephra, Azukoen1 tephra and so on are traced in the seismic sections on the basis of borehole data near the seismic lines. A syncline dipping southward and thickening toward depth and flexures of the western limb are detected in the seismic sections of the Arakawa lowland. They indicate existence of blind faults in the depth. Small undulations of reflectors are seen around the Ayasegawa fault. Almost all reflectors are nearly flat and deep reflectors imply a gentle syncline in the Kazo lowland.

Keywords: Kazo lowland, Arakawa lowland, Omiya upland, Ayasegawa fault, Arakawa fault, Kuki fault, Motoarakawa tectonic belt, seismic reflection survey, subsurface structure

1 はじめに

関東平野中央部の深度 500 m 程度までの地下構造 を明らかにすることを目的として、計6本,総延長 57 km の調査測線で反射法地震探査による地下構造調 査を実施した.平成17 年度は川越測線,平成18 年度 は菖蒲測線,平成19 年度は加須測線と桶川測線でそ れぞれ調査を実施した.この4本の調査測線は,加須 低地から大宮台地と荒川低地を通り入間台地に至る方 向にほぼ一列に並ぶ.その後,補足的調査として,平 成21 年度に行田-菖蒲測線,平成22 年度に川島測線 でそれぞれ調査を実施した.行田-菖蒲測線は加須低 地,川島測線は荒川低地に位置する.本報告は,この 6 測線の地下構造調査とその解析結果について述べる. 個々の調査測線の詳細は,山口ほか(2006),山口ほか (2007),山口ほか(2008),木村ほか(2010),伊藤ほか (2011)を参照されたい.

2 調査地域周辺の地形・地質概説

調査対象とした地域には加須低地,大宮台地,荒 川低地,入間台地などが分布する.堀口(1974,1980) に基づいて調査地域の地形と地質について概略を記す (第1図). 加須低地は、大宮台地北部が相対的に沈降し台地が 沖積面下に埋没して形成された.埋没台地には開析谷 ができており、台地上面では埋積が薄く、谷では沖積 層が厚く埋積する.大宮台地は、中川・荒川・加須な どの各低地に取り囲まれ平野の中に孤立している.台 地の周囲は、北側以外は比高の大きな崖で低地と接し 台地地形が明瞭であるが、北側は地形的に低地との区 別が難しい.荒川低地は、荒川に沿う低地で、荒川本 流および支流が流れており、自然堤防、後背湿地など の微地形が認められる.古い流路跡を示す低湿地が自 然堤防の間に認められ、荒川低地が河川の蛇行により 形成されたことを示す.入間台地は、関東平野西縁の 丘陵に続く台地群の一つで、山地から平野に流出した 河川の扇状地として形成された段丘である.武蔵野段 丘 II 面堆積物が広く分布する.

3 調査地域周辺の活構造に関する研究史

調査地域周辺には、大宮台地から加須低地にかけて 綾瀬川断層などからなる元荒川構造帯、荒川低地に荒 川断層の存在が指摘されている(第1図).

3.1 綾瀬川断層,久喜断層,元荒川構造帯

堀口(1974)は、地形・地質の検討により、関東平

野中西部を4つの異なる変動ブロックに分け、大宮台 地・加須低地・館林台地を1つのブロックとみなし、 関東構造盆地の中心が加須付近にある、としている.

清水・堀口(1981)は、野外調査と地形面高度の検 討から、綾瀬川低地に沿う東側低下の綾瀬川断層を指 摘し、その東側で台地面の崖線や線状構造が発達する 地域の北東縁を久喜断層と認め、両断層ではさまれた 地域を元荒川構造帯と呼んだ. 綾瀬川断層による変位 は東京軽石層の変位から1年に0.12 mm 前後と推定し、 久喜断層の変位方向や変位量については言及していな い. 地震調査推進本部(2000)は、綾瀬川断層北部につ いては、反射断面(笠原(1995)のKAN-92 測線等)か ら活断層と判断し、断層南部については、ボーリング 調査や反射断面等(埼玉県、1996)に基づいて活断層 ではないと判断した. 佐藤ほか(2006)は、北関東測線 の反射断面で、綾瀬川断層付近の堆積層構造は東傾斜 し、浅部から深部が累積的に変形した活構造である、 としている.

3.2 荒川断層

貝塚(1957)は、武蔵野台地の地形考察に基づいて、 武蔵野台地の北部は北東に傾き下がる変形を示し、そ の変動は大宮台地には及んでいないことを指摘した. 貝塚(1975)は、入間台地・武蔵野台地と大宮台地の間 に西落ちの断層を想定し、断層による台地面の落差は 10~15 m、変位速度は1~2 m/万年と推定した. 貝 塚ほか(1977)は、ボーリング資料から断層が通らない ところを明らかにする消去法により断層位置を推定し た.

多田(1983)は、重力探査や屈折法地震探査から、 荒川付近には、大宮台地側(東側)隆起の基盤断層は 認められず、武蔵野台地側(西側)隆起の基盤断層が みられるとした. 笠原(1995)は、KAN-92 測線の反射 断面で荒川断層付近の反射パターンは古い地層ほど変 位が大きいことを指摘した. 遠藤ほか(1997)は、KW 測線の反射断面で、北東傾斜の反射面が測線東端付近 で水平になる傾斜変化を認め、これが荒川低地付近に おける地形面の傾斜変化の境界に対応するとした.

杉山ほか(1997)は、上記の反射断面(笠原, 1995; 遠藤ほか, 1997)で見られる構造を東落ちの伏在断層 と認め、これを推定活断層として図示し荒川断層に対応するものとした. 廣内(1999)は、地形学的資料から 荒川断層を再検討し、荒川断層は多田(1983)や遠藤ほ か(1997)の東落ちの深部構造線としては認められる が、第四紀後期における活動は認められないと結論づ けた. 地震調査推進本部(2004)は、反射断面(笠原, 1995;遠藤ほか, 1997;埼玉県, 1998)や地形の検討 (廣内, 1999)を根拠として、従来北東側隆起とされて きた荒川断層は存在しないと判断した.

一方,佐藤ほか(2006)は,北関東測線の反射断面 の桶川市内の区間で,浅部から深部の堆積層が西傾斜 を呈し深部ほど傾斜角が大きいことから変位の累積性 が認められるとし、大宮台地の西縁を限る西側低下の 荒川断層との関連を示唆した.この変位方向は、貝塚 (1975)が推定した荒川断層の変位方向と一致する.

4 調査測線と探査諸元

第2図に6本の調査測線の全体配置を示し,第3図 a-cに個々の測線配置を示す.第1表に調査諸元を示 す.

調査測線の配置や調査順は、本プロジェクトでの 新規掘削ボーリングの位置などに応じて適宜変更でき るように柔軟性を持たせた.結果的に川越測線,菖蒲 測線,加須測線,桶川測線の順に調査を実施した.こ の4測線は北東-南西方向に一列に並び、大宮台地と 荒川低地を通り、その両側の加須低地と入間台地に達 しており, 大宮台地を横断するという地下構造調査の 当初の目標をほぼ達成した.主要な活断層とされる綾 瀬川断層と,元荒川構造帯,荒川断層を横断した.た だし大宮台地上に約2kmの未調査区間が残った.行 田-菖蒲測線は、調査対象地域の北西付近に地下水の 水質異常分布 (Yasuhara et al., 2007) が見られ, それを 規制する地質構造の急変が予想されたことから設定し た.川島測線は,川島坑井(関東平野中央部地質研究会, 1994;水野・納谷, 2011)の地質層序を川越測線に対 比させる目的で実施した.

4.1 川越測線

川越測線は川越市小堤から川島町上大屋敷に至る 9.1 kmの区間である. 受振点は市道・町道・河川敷・ 堤防上道路等の路肩地面に設定した. 受振点 326 ~ 720の区間は小畔川・入間川の河川敷・堤防上道路で ある. 震源はバギー型 MiniVib1 台を使用した. 河川 敷の一部で, MiniVib は姿勢不安定のため発震できな かった. 発震点1~373 は,オフセット10m~1,440 mのエンドオン展開とし,発震移動に伴い受振範囲も 移動するロールアロングとした. それ以降は,発震点 が24点あるいは48点進む間は固定受振とし,まとめ て24 受振点あるいは48 受振点ずつ移動という振分展 開とした. 個々のスイープ記録を探鉱器で相互相関し, 探鉱機で垂直重合は行わず全記録を個別に保存した.

4.2 菖蒲測線

菖蒲測線は桶川市坂田から久喜市北中曽根に至る 10.6 kmの区間である.受振点 680 付近が菖蒲坑井(山 口ほか,2009)の約700 m 南東を通る.震源は Enviro-Vib1 台を使用した.受振点 269 ~ 304 は,発震点 243 ~ 297 で発生する埋設管起因のチューブ波ノイズの影響を避けるため,発震点から約100 m 東方の水田内の 農道に迂回(オフセット)させた.発震点・受振点の 展開は、同時受振点 144 を固定し、南端から 48 受振 点目の位置まで発震というパタンを採用した. 個々の スイープ記録を探鉱器で相互相関し, 探鉱機で垂直重 合は行わず全記録を個別に保存した. 発震点 860 付近 以北は NHK 放送所の電波に起因するノイズを避ける ため, 調査時は相互相関前の受振データを保存し, デー タ処理時に正常なスイープ波形を用いて相互相関を適 用しショット記録に変換した.

4.3 加須測線

加須測線は加須市南大桑から菖蒲町三軒に至る7.5 kmの区間である.主要な探査諸元は菖蒲測線に準じる.事前に2箇所(NHK 放送所付近,東北自動車道側道) でノイズ測定を実施した.調査は北から南方向に進め, 菖蒲測線との接続部は94点の測点を重ねた.受振点 97~184の区間はミニインパクタで発震し,同時受 振点は96点で固定した.この区間でも比較的深い反 射面を捉えるため,測点185~264で発震し受振点1 ~144 で受振するロングオフセット記録を取得した. NHK 放送所付近では菖蒲測線の最後の部分と同様に 対処した.

4.4 桶川測線

桶川測線は川島町上大屋敷から桶川市下日出谷に至 る 6.2 km の区間である.調査は西から東方向に進め, 川越測線との接続部は 72 点の測点を重ねた.主要な 探査諸元は菖蒲測線に準する.荒川は平成 19 年台風 9 号による大雨で増水し,河川敷内の受振点 106 ~ 207 の受振器・ケーブルが 2 日間水没した.193 ~ 336 の 固定受振点に対して 198 ~ 336 で発震し,それ以降は, 固定 144 受振点の北側 97 ~ 144 の位置で発震するパ タンに変更した.

4.5 行田一菖蒲測線

行田-菖蒲測線は行田市渡柳から菖蒲町柴山枝郷に 至る16 kmの区間である.本測線は受振点1458 が菖 蒲坑井の約200 m 西を通り,受振点1547 付近で菖蒲 測線の受振点655 と交差する.発震点・受振点の展開 は,同時受振点180 を固定し,西端から24 ないし36 受振点目の位置まで発震というパタンを採用した.全 スイープで相互相関前のデータを記録した.

4.6 川島測線

川島測線は入間川河川敷から川島町下小見野に至る 7.6 kmの区間である.受振点78 で川越測線の受振点 611 と交差し,受振点437 が川島坑井の約30 m 西方 を通る.震源は MiniVibT15000 を1台使用した.発震 点・受振点の展開は,同時受振点156点のエンドオン 展開でロールアロングした.全スイープで相互相関前 のデータを記録した.

5 データ処理

反射法地震探査データは共通反射点重合法 (CMP 重 合法, 例えば, 水越・田村(1998))によって処理した(第 4図).まず,各測線の調査終了後,各測線を個別にデー タ処理した、次に、接続部が重なる川越測線と桶川測 線を結合して川越一桶川測線とし、測点番号と CMP 番号を通し番号に付け直し、1本の測線として発震記 録の段階からデータ再処理した. 同様に, 接続部が重 なる菖蒲測線と加須測線も菖蒲ー加須測線としてデー タ再処理した.これにより、測線接続部は個別に処理 した断面の切り貼りよりも滑らかに繋がった.川越-桶川測線, 菖蒲-加須測線, 行田-菖蒲測線の3測線 はデータ処理メニュやパラメタを統一し、データ処理 の基準面(データムプレーン、断面の往復走時0msお よび深度0mに相当)を標高10mとし速度解析は100 CMP 毎に実施した.川島測線の基準面は 60 m とし速 度解析は200 CMP毎に実施した.データ処理で使用 したソフトウエアは、川越-桶川測線, 菖蒲-加須測 線,行田-菖蒲測線が Schlumberger 社製 Omega,川島 測線が GNS 社製 Claritas である.

6 反射断面

第5図 a-d に各測線の CMP 重合時間断面,マイグ レーション時間断面,深度断面を示す.深度断面は縦 横比を1:1とし,時間断面の時間軸は深度断面に合 わせて調整した.第6図 a-d に縦横比を5:1とした 深度断面を示す.川島測線および川越-桶川測線は反 射面の傾斜や褶曲が顕著に見られ,菖蒲-加須測線お よび行田-菖蒲測線は穏やかな構造を示す.

6.1 川越一桶川測線

深度数 10 m ~ 1 km に連続の良い多数の反射面が見 られる. CMP 1100 ~ 東端部 (CMP 2550) は CMP 1750 付近を最深部とする向斜を成す. これより西方の CMP 1150, 700, 300 付近の反射面はやや波状の形態を示す. CMP 400 以西の深度 1.5 km の東傾斜の反射面はその 上位の反射面より傾斜が緩く,深度 2.2 km の反射面は ほぼ水平である. それ以外のところの 1 km 以深は向 斜と調和的な傾斜の断続的な反射面が見られる.

6.2 菖蒲一加須測線

深度1kmまで連続の良い多数の反射面が見られる. 川越-桶川測線ほど顕著ではないが, CMP 1200 付近 を最深部とする緩やかな向斜が見られる.1km以深の 反射面は断続的である.

6.3 行田一菖蒲測線

深度1kmまで連続の良い多数の反射面が見られる. 1km以深ではCMP 600付近でやや盛り上がりそこから南東に緩やかに傾斜する.

6.4 川島測線

深度 1.5 km まで連続が良く南傾斜の多数の反射面 が見られる.他の測線と比べて反射面の傾斜は大きく, 深部ほど傾斜が大きい.単調に傾き下がるのではなく CMP 700 付近で撓曲状の構造を示す. CMP 1100 より 北側の深度 1.5 km 以深に強振幅の反射面, CMP 300 の深度 2.2 km に断続的な反射面が見られる.

7 考察

第2表に調査地付近の坑井で確認あるいは推定された主要な地層境界の深度(水野・納谷,2011;納谷ほか,2012,2013)と,CMP測線までの距離および反射断面での換算深度を示す.これらの深度に基づいて反射面をトレースした.

第7図 a-d は縦横比5:1の深度断面に坑井の主要 な地層境界や反射面のトレース等を重ねたものであ る.第8図に4断面を一覧表示した.一覧表示では川 越一桶川測線と菖蒲一加須測線を2km分だけ離した. 断面の深度0mは標高10mに相当する(川島測線は 他測線より50m分上にずらして表示し,以下は断面 の深度0mを標高10mで統一).

約112万年前に噴出したとされる上越テフラは、調 査地域では川島坑井,鷲宮坑井,大利根坑井で対応付 けされている(水野・納谷, 2011; 納谷ほか, 2013). 川島測線で川島坑井の上越テフラ層付近の反射面をト レースし測線交点から川越-桶川測線へ繋いだ(反射 面 J1). 菖蒲-加須測線では参照可能な2坑井のうち 鷲宮坑井を参照した.上越テフラは鷲宮坑井の北方の 大利根坑井で43m浅く,菖蒲-加須測線の反射面は 測線北半分で北に向けてやや浅くなる. CMP 2600 に 投影した上越テフラ層付近の反射面をトレースし行田 ずしも強振幅ではないが, 比較的連続が良く同時代を 示す鍵層になる.反射面 J1 の測線内の標高差は、川 島測線で約250mの南側低下,川越-桶川測線で約 250 m, J2 は菖蒲-加須測線および行田-菖蒲測線で 30 m 以下である.

阿須公園1テフラは、川島坑井および行田坑井で見 出されている(水野・納谷,2011).上記と同様にして、 川島坑井の阿須公園1テフラ付近の反射面をトレース し川越一桶川測線に繋ぎ反射面Z1とし、行田一菖蒲 測線では行田坑井をCMP500に投影し阿須公園1テフ ラ付近の反射面をトレースして菖蒲一加須測線へ繋い で反射面Z2とした.反射面Z1の測線内の標高差は、 川島測線で約400mの南側低下、川越一桶川測線で約 400m、Z2は菖蒲一加須測線で約70m、行田一菖蒲測 線で約90mである.

川島坑井および菖蒲坑井で下総層群と上総層群の境

界と見なされる深度付近から反射面 S1, S2 をトレー スした.反射面 S1 の標高差は川島測線で約 100 m の 南側低下,川越-桶川測線で約 100 m, S2 は菖蒲-加 須測線で約 50 m,行田-菖蒲測線でほぼ一定深度であ る.川島坑井の沖積層基底深度付近の反射面 A1 をト レースし川越-桶川測線に繋いだ.A1 は川島測線の 最も浅い反射面である.加須低地では沖積層基底が浅 く,菖蒲-加須測線と行田-菖蒲測線ではそれに対応 する反射面はイメージングされていない(調査仕様に より浅い方の探査限界を超える).

川島坑井の深度 587 m に地層境界が設定され,上 位が鮮新統(三浦層群),下位が中新統に対比されて いる(関東平野中央部地質研究会,1994).この深度か ら反射面 M を川島測線および川越-桶川測線へトレー スした.反射面 M の標高差は,川島測線で約 600 m, 川越-桶川測線で約 700 m である.反射面 M は川越 ー桶川測線で捉えられた向斜の最も深い反射面にほぼ 相当する.菖蒲-加須測線および行田-菖蒲測線には 反射面 M の深度を特定する坑井データが無いので,2 つの断面で認められる連続的で最深の反射面を R5 と した.

川越一桶川測線の反射面 R1, R2 に対応すると考 えられる反射面が,本測線に近接する KAN-92 測線 (笠原, 1995)および北関東測線(佐藤ほか, 2006; Ishiyama et al., 2013)で捉えられている. Ishiyama et al.(2013)は,前者を中下部上総層群と鮮新統・中新統 の境界,後者を先新第三系基盤上面と解釈した.川島 測線の反射面 R3 は,約2 km 東方の KAN-94 測線(笠原, 1996)の深度断面の地質解釈(高橋ほか, 2006)を参照 すると,先新第三系基盤上面に相当すると考えられる. 高橋ほか(2006)で示された KAN-94 測線の反射面は凹 凸が少なく南傾斜するのに対して,川島測線では基盤 (R3)も堆積層(J1, A1, M3)も単調な南傾斜ではなく 凹凸を示す.反射面 R4 は基盤上面ではなく,基盤よ り上位の堆積層内の反射面と考えられる.

荒川低地には荒川断層が推定されている(貝塚, 1975, 1977; 杉山ほか, 1997)が, その存否, 位置, 変位方向については不明な点が多かった.川島測線お よび川越-桶川測線の反射断面により、荒川低地の地 下に南に傾く向斜が伏在することが確認された。向斜 の曲率はA1からMへと反射面が深くなるほど大きい. 入間台地や武蔵野台地の北東への傾動(貝塚, 1975; 杉山ほか, 1997)はこの向斜形成の地形への現れと考 えられる.川越-桶川測線のAn で示す上に凸の部分 は杉山ほか(1997)の背斜に相当する.川越一桶川測線 では反射面 M 以深の構造は明確ではないが、向斜やそ の西翼部に見られる撓曲などから、このような構造を 形成する断層が深部に伏在するのは確実である.数10 m 以深の極最近の反射面の変形は Ishiyama et al.(2013) は、北関東測線で先新第三系基盤内の thrust とその上 端から堆積層に褶曲変形を与える構造を解釈してい

る.

菖蒲-加須測線の CMP 300 以南の反射面はそれ以 北の反射面と比べてやや乱れている. これは綾瀬川断 層の影響と考えられる. CMP 150 以南で緩く傾斜する 反射面は、綾瀬川断層の中心部付近の反射断面(石山 ほか, 2005) で見られるような growth strata に対応す るものかもしれない.地下水の水質異常分布 (Yasuhara et al., 2007) から加須低地の北西部, 行田-菖蒲測線 の北西部分に地下構造の急変が予想された. 深度1km 付近の反射面 R5 は CMP 600 付近で盛り上がるが、そ の上位反射面 S2, J2, A2 の深度には著しい構造急変 は見当たらない. 菖蒲-加須測線は清水・堀口(1981) が活構造と指摘した元荒川構造帯を横断する. 菖蒲 -加須測線では、綾瀬川断層付近以外では反射面 S2, J2, A2 は連続がよく高度変化が小さい. また浅部か ら深部に至る系統的で顕著なずれは見られない.本測 線の範囲内では, 綾瀬川断層周辺の地層変形を除くと, 第1図の線状構造を示す地形群(清水・堀口1981)の 地下に断層状の顕著な地層変形は存在しない.加須低 地の地下には南東方向に軸を持つ非常に緩やかな向斜 が存在すると考えられる.

8 まとめ

関東平野中央部で計6本,総延長57kmの調査測線 で反射法地震探査による地下構造調査を実施し4枚の 反射断面を作成した.反射断面図上で下総層群基底, 上越火山灰層,阿須公園1火山灰層等の深度の反射面 をトレースした.荒川低地には南に傾斜する向斜が存 在し深部ほど曲率が大きい.加須低地には非常に緩や かに南東に傾斜する向斜が存在する.

謝辞 本調査の実施にあたり,荒川上流河川事務所, 川越市役所,桶川市役所,上尾市役所,加須市役所, 久喜市役所,行田市役所,鴻巣市役所,川島町役場, 旧菖蒲町役場,旧騎西町役場,それぞれの地元の皆様, 横田俊之氏,木村治夫氏,木村克己氏,楮原京子氏, 岡田真介氏にご協力いただきました.査読者の水野清 秀氏のご指摘により本稿は改善されました.PDF 作成 に際しては小松原純子氏のご協力をいただきました. ここに記して感謝致します.

文献

- 遠藤秀典・杉山雄一・渡辺史郎・牧野雅彦・長谷川功 (1997) 浅層反射法弾性波探査による関東平野中 央部の地下地質構造,地球科学, 51, 15-28.
- 廣内大助(1999) 武蔵野台地・大宮台地における第四 紀後期段丘面の高度分布から見た荒川断層の活 動性についての再検討.地理学評論, 72A, 335-344.

- 堀口萬吉(1974) 関東平野西部の地形区分と段丘面 の変動. 関東地方の地震と地殻変動, ラティス, 119-127.
- 堀口萬吉(1980) 埼玉県の地形と地質. 埼玉県市町村 誌総説編, 274-325.
- 石山達也・水野清秀・杉山雄一・須貝俊彦・中里裕臣・ 八戸昭一・末廣匡基・細矢卓志(2005) 変動地形・ ボーリング・反射法地震探査により明らかになっ た綾瀬川断層北部の撓曲変形,活断層・古地震研 究報告, no.5, 29-37.
- Ishiyama, T., Sato H., Kato N., Nakayama T., Abe S. (2013) Active blind thrusts beneath the Tokyo metropolitan area: Seismic hazards and inversion tectonics. *Geophysical research letters*, **40**, 2608-2612.
- 伊藤忍・山口和雄・横倉隆伸・伊東俊一郎 (2011) 埼 玉県川島町における反射法地震探査,平成22年 度沿岸域の地質・活断層調査研究報告,地質調査 総合センター速報, no.56, 143-148.
- 地震調査研究推進本部 (2000) 元荒川断層帯の評価. http://www.jisin.go.jp/main/index.html.
- 地震調査研究推進本部 (2004) 荒川断層の評価. http:// www.jisin.go.jp/main/index.html.
- 貝塚爽平(1957) 武蔵野台地の地形変位とその関東造 盆地運動における意義. 第四紀研究, 1, 22-30.
- 貝塚爽平(1975) 台地面の変形から知られる活構造. 東京都直下地震に関する調査(その2),東京都防 災会議,43-54.
- 貝塚爽平・松田時彦・町田 洋・松田磐余・菊地隆男・ 丸田英明・山崎晴雄・村田明美(1977) 首都圏の 活構造.東京都直下地震に関する調査研究(その 4),東京都防災会議,165-220.
- 関東平野中央部地質研究会 (1994) 関東平野中央部地 下地質の編年と対比,地団研専報, no.42, 154-164.
- 笠原敬司(1995) バイブロサイス反射法調査. 首都圏 直下の地震の予知手法の高度化に関する総合研究 (第1期:平成3~5年度)成果報告書. 科学技 術庁研究開発局, 60-71.
- 笠原敬司(1996) バイブロサイス反射法調査. 首都圏 直下の地震の予知手法の高度化に関する総合研究 (第Ⅱ期:平成6・7年度)成果報告書. 科学技術 庁研究開発局, 66-78.
- 木村克己・水野清秀・山口和雄・駒澤正夫・安原正也・ 小松原純子・竹村貴人・関口春子 (2010) 関東平 野沿岸域の地震動特性と広域地下水流動系の解明 に関する地質学的総合研究,平成21年度沿岸域 の地質・活断層調査研究報告,地質調査総合セン ター速報, no.54, 167-187.
- 水越郁郎・田村八洲夫 (1998) 反射法地震探査. 物理 探査ハンドブック,物理探査学会, 49-76.
- 水野清秀・納谷友規(2011) 広域テフラ対比と海成

層層準の認定に基づく関東平野中央部のボーリ ングコアの対比,平成22年度沿岸域の地質・活 断層調査研究報告,地質調査総合センター速報, no.56,121-132.

- 納谷友規・八戸昭一・松島紘子・水野清秀(2012) 珪 藻化石と岩相に基づく関東平野中央部で掘削され たボーリングコアの海成層準の認定,地調研報, 63,147-180.
- 納谷友規・平松力・古澤明・柳沢幸夫・山口和雄 (2013) 関東平野中央部埼玉県大利根町で掘削された 1505m 温泉ボーリングの年代層序,地質学雑誌, 119, 5, 375-395.
- 埼玉県(1996) 埼玉県活断層調査報告書. 埼玉県環境 部地震対策課, 200p.
- 埼玉県(1998) 平成9年度地震関係基礎調査交付金 荒川断層に関する調査成果報告書.埼玉県,71p.
- 産業技術総合研究所地質調査総合センター(編)(2012) 20万分の1日本シームレス地質図データベース (2012年7月3日版).産業技術総合研究所研究情 報公開データベースDB084,産業技術総合研究所 地質調査総合センター.
- 佐藤比呂志・平田 直・岩崎貴哉・纐纈一起・伊藤 潔・ 伊藤谷生・笠原敬司・加藤直子(2006) 北関東地 殻構造探査(北関東測線2006,大宮-野田測線 2006)大都市大震災軽減化特別プロジェクト I 地震動(強い揺れ)の予測「大都市圏地殻構造調 査研究」(平成17年度)成果報告書.文部科学省 研究開発局,東京大学地震研究所,京都大学防災 研研究所,防災科学技術研究所,18-97.
- 清水康守・堀口萬吉(1981) 大宮台地北東部における 元荒川構造帯(新称)について.地質学論集, no. 20, 95-102.
- 杉山雄一・佐竹健治・駒澤正夫・須貝俊之・井村隆介・ 水野清秀・遠藤秀典・下川浩一・山崎晴雄・石田 瑞穂・広島俊男・長谷川功・村田泰章(1997) 50 万分の1活構造図「東京」(第2版).3図葉+説 明書 34p,地質調査所.
- 多田 堯(1983) 関東平野の基盤構造と重力異常(2)-活断層の地球物理学的研究--. 地震,第2輯, 36,359-372.
- 高橋雅紀・林広樹・笠原敬司・木村尚紀(2006) 関東 平野西縁の反射法地震探査記録の地質学的解釈-とくに吉見変成岩の露出と利根川構造線の西方延 長-,地質学雑誌, 112, 33-52.
- 山口和雄・加野直巳・横倉隆伸・大滝壽樹・伊藤 忍 (2006) 荒川低地北部の浅部地下構造.活断層・ 古地震研究報告, no.6, 11-20.
- 山口和雄・加野直巳・住田達哉・大滝壽樹・牧野雅彦・ 横倉隆伸(2007) 綾瀬川断層から加須低地に至る 浅部地下構造.活断層・古地震研究報告, no.7, 81-90.

- 山口和雄・加野直巳・大滝壽樹・住田達哉・横倉隆伸・ 牧野雅彦・伊藤忍・横田俊之・木村治夫 (2008) 関東平野中部,加須低地・荒川低地の浅部地下構 造.活断層・古地震研究報告, no.8, 119-131.
- 山口正秋・水野清秀・納谷友規・本郷美佐緒・中里祐臣・ 中澤努(2009) 関東平野中央部,埼玉県菖蒲町で 掘削された 350 mボーリングコア(GS-SB-1)の層 相と堆積物物性,地調研報,60,147-197.
- Yasuhara, M., Inamura, A., Takahashi, M., Hayashi, T., Takahashi, H., Makino, M., Handa, H., and Nakamura, T.(2007) Groundwater system compartmentalized by a tectonic zone in the Kanto plain central Japan. *IAH Selected Papers*, **10**, 281-288.

(受付: 2013年11月25日 受理: 2014年2月6日)

- 第1図 測線と地質図. 黒太実線が今回報告する CMP 測線と CMP 番号を示す. KAN-92 は笠原 (1995), KAN-94 は笠原 (1996), KW は遠藤ほか (1997), AFR は石山ほか (2005), 北関東は佐藤ほか (2006) による既存測線の 概略位置を示す. 基図として 20 万分の1日本シームレス地質図データベース(産業技術総合研究所地質調査 総合センター(編), 2012)を使用し、測線、断層、地名などを追記した.赤線の綾瀬川断層、荒川断層、2 本の背斜軸は杉山ほか (1997), 久喜断層と元荒川構造帯 (マゼンタと灰色のハッチ部)は清水・堀口 (1981) による. 坑井位置は納谷ほか (2012, 2013) による.
- Fig.1 Seismic lines and geological map.Black bold lines are seismic CMP lines with CMP numbers of this study. Thin black lines are existing seismic survey lines. They are KAN-92 (Kasahara, 1995), KAN-94 (Kasahara, 1996), KW (Endo et al., 1997), AFR (Ishiyama et al., 2005) and Kitakanto (Sato et al., 2006). Survey lines, faults and topography names are added to the seamless digital geological map of Japan 1:200,000 (Geological Survey of Japan, AIST (ed.)). The Ayasegawa fault, Arakawa fault and two anticlines (red lines) are from Sugiyama et al. (1997) and the Kuki fault and Motoarakawa tectonic belt (magenta lines and hatched part with gray color) are from Shimizu and Horiguchi(1981). Borehole locations are from Naya et al. (2012, 2013).

- 第2図 全測線の配置図. 黒線と黒文字は調査測線と発震点・受振点番号,赤線と赤文字は CMP 測線と CMP 番号. 坑井位置は納谷ほか (2012) による. 基図として国土地理院発行の数値地図 50,000 (地図画像)「熊谷」,「鴻巣」, 「川越」,「大宮」の一部を使用し測線などを追記した.
- Fig.2 All seismic survey lines.Black lines and numbers are source/receiver point and station numbers, red lines and numbers are CMP point and station numbers. Borehole locations are from Naya et al. (2012). The base map is parts of digital map 50000 (Map Image) Kumagaya, Konosu, Kawagoe and Omiya published by the Geographical Survey Institute.

第3図a 各測線の詳細位置 川越-桶川測線と川島測線.黒線と黒文字は調査測線と発震点・受振点番号,赤線 と赤文字は CMP 測線と CMP 番号. 坑井位置は納谷ほか (2012, 2013) による. 基図として国土地理院発行 の数値地図 50,000(地図画像)「熊谷」,「鴻巣」,「川越」,「大宮」の一部を使用し測線などを追記した.

Fig.3a All seismic survey lines in detail, Kawagoe-Okegawa line and Kawajima line. Black lines and numbers are source/ receiver point and station numbers, red lines and numbers are CMP point and station numbers. Borehole locations are from Naya et al. (2012, 2013). The base map is parts of digital map 50000 (Map Image) Kumagaya, Konosu, Kawagoe and Omiya published by the Geographical Survey Institute.

第3図b 各測線の詳細位置 菖蒲-加須測線と行田-菖蒲測線. 黒線と黒文字は調査測線と発震点・受振点番号, 赤線と赤文字は CMP 測線と CMP 番号. 坑井位置は納谷ほか (2012, 2013) による. 基図として国土地理院 発行の数値地図 50,000 (地図画像)「熊谷」,「鴻巣」,「川越」,「大宮」の一部を使用し測線などを追記した. Fig.3b All seismic survey lines in detail, Shobu-Kazo line and Gyoda-Shobu line. Black lines and numbers are source/receiver point and station numbers, red lines and numbers are CMP point and station numbers. Borehole locations are from Naya et al. (2012, 2013). The base map is parts of digital map 50000 (Map Image) Kumagaya, Konosu, Kawagoe and Omiya published by the Geographical Survey Institute.

- 第3図 c 各測線の詳細位置 行田-菖蒲測線. 黒線と黒文字は調査測線と発震点・受振点番号,赤線と赤文字 は CMP 測線と CMP 番号. 坑井位置は納谷ほか (2012, 2013) による. 基図として国土地理院発行の数値地 図 50,000 (地図画像)「熊谷」,「鴻巣」,「川越」,「大宮」の一部を使用し測線などを追記した.
- Fig.3c All seismic survey lines in detail, Gyoda-Shobu line. Black lines and numbers are source/receiver point and station numbers, red lines and numbers are CMP point and station numbers. Borehole locations are from Naya et al. (2012, 2013). The base map is parts of digital map 50000 (Map Image) Kumagaya, Konosu, Kawagoe and Omiya published by the Geographical Survey Institute.

第4図 データ処理フロー. Fig.4 Data processing flow.

- 第5図d 各種重合断面,川島測線.STK:CMP重合時間断面,MIG:マイグレーション時間断面,DEP:深度断面.横軸はCMP番号(5m間隔).縦軸は時間断面が時間(ms),深度断面が深度(m).深度断面は縦横比を1:1とし,時間断面の時間軸は深度断面に合わせて調整した.
- Fig.5d Stacked sections, Kawajima line. STK: CMP stacked time section, MIG: migrated time section, DEP: depth section. The horizontal axis is CMP number (5 m interval) and the vertical axis is time (ms) for time sections and depth (m) for depth section. No vertical exaggeration is applied to depth section and vertical axis is adjusted for two time sections to look like depth section.

第6図a 深度断面 川越一桶川測線. 横軸は CMP 番号 (5 m 間隔). 縦軸は深度 (m). 縦横比は 5:1. Fig.6a Depth sections, Kawagoe-Okegawa line. The horizontal axis is CMP number (5 m interval) and the vertical axis is depth (m). The vertical exaggeration is 5.

第6図b 深度断面 菖蒲-加須測線. 横軸は CMP 番号 (5m間隔). 縦軸は深度 (m). 縦横比は 5:1. Fig.6b Depth sections, Shobu-Kazo line. The horizontal axis is CMP number (5 m interval) and the vertical axis is depth (m). The vertical exaggeration is 5.

The vertical exaggeration is 5.

number (5 m interval) and the vertical axis is depth (m). The vertical exaggeration is 5.

第7図a 地質解釈川越-桶川測線. 横軸はCMP番号(5m間隔). 縦軸は深度(m). 縦横比は5:1. トレースした反射面,楕円で囲んだ反射面については本文を参照.

Fig.7a Interpretations of seismic sections, Kawagoe-Okegawa line. The horizontal axis is CMP number (5 m interval) and the vertical axis is depth (m). The vertical exaggeration is 5. Refer to text about traced circled reflectors.

菖蒲一加須測線

第7図b 地質解釈 菖蒲-加須測線. 横軸は CMP 番号 (5 m 間隔). 縦軸は深度 (m). 縦横比は 5:1. 坑井データは, 緑が下総層群,青が上総層群,マゼンタが中新統を示す.トレースした反射面,楕円で囲んだ反射面につい ては本文を参照.

Fig.7b Interpretations of seismic sections, Shobu-Kazo line. The horizontal axis is CMP number (5 m interval) and the vertical axis is depth (m). The vertical exaggeration is 5. The Shimosa group is green, the Kazusa group is blue and the Miocene is magenta in borehole locations. Refer to text about traced circled reflectors.

行田一菖蒲測線

第7図 c 地質解釈 行田-菖蒲測線. 横軸は CMP 番号 (5 m 間隔). 縦軸は深度 (m). 縦横比は 5:1. 坑井データは, 緑が下総層群,青が上総層群,マゼンタが中新統を示す.トレースした反射面,楕円で囲んだ反射面につい ては本文を参照.

Fig.7c Interpretations of seismic sections, Gyoda-Shobu line. The horizontal axis is CMP number (5 m interval) and the vertical axis is depth (m). The vertical exaggeration is 5. The Shimosa group is green, the Kazusa group is blue and the Miocene is magenta in borehole locations. Refer to text about traced circled reflectors.

Fig.7d Interpretations of seismic sections, Kawajima line. The horizontal axis is CMP number (5 m interval) and the vertical axis is depth (m). The vertical exaggeration is 5. The Shimosa group is green, the Kazusa group is blue and the Miocene is magenta in borehole locations. Refer to text about traced circled reflectors.

通続	名	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	増川		加須	行田-菖蒲	響川
颤	遵	バギー型MiniVib(IVI 社), 小型油圧impactor (地球科学総合研究所)	EnviroVib(IVI社)	EnviroVib(IVI社)	 パギー型MiniVib(IVI 社), 小型油圧impactor (地球科学総合研究所) 	Erwiro Vib(IVI社)	MiniVib T15000(IVI社)
発震点	副調	2.5m	2.5m	2.5m	2.5m	5m	10m
発震/	パタン	1箇所固定	1箇所固定	1箇所固定	1箇所固定	1箇所固定	1箇所固定
総発島	官点数	2,964	2,116	3,114	2,797	3,088	734
発震度]波数	15~120	15~120	15~120	15~120	15~120	15~120
メイー	プ回数	標準2回	標準2回	標準2回	標準2回	標準4回	標準6回
スイー	-プ長	13s	13s	13s	13s	13s	16s
受制	器	UM2(MarkProducts社)	UM2(MarkProducts社)	UM2(MarkProducts社)	UM2(MarkProducts社)	SG-10(Sercel社)	SG-10(Sercel社)
受振点	間隔	10m	10m	10m	10m	10m	10m
総受掳	長点数	912	624	1,056	720	1,596	761
固有质	引波数	10Hz	10Hz	10Hz	10Hz	10Hz	10Hz
受振器	导個数	12個をバンチング	6個をバンチング	6個をバンチング	6個をバンチング	6個をバンチング	6個をバンチング
展	韻	エンドオン,144受振点を固定し震 源だけ移動する振分展開	144受振点を固定し展開の西端か ら48点目まで発震	144受振点を固定し展開の南端か ら48点目まで発震	144受振点を固定し展開の北端か ら48点目まで発震	180受振点を固定し展開の西端か ら24点あるいは36点まで発震	エンドオン
搂 额	品	DAS1(OyoGeospace社)	DAS1(OyoGeospace社)	DAS1(OyoGeospace社)	DAS1(OyoGeospace社)	DSS-12 (サンコーコンサルタント社)	DSS-12 (サンコーコンサ ルタント社)
チャチ	い数	144ch	144ch	144ch	144ch	180ch	156ch
記録	張長	3.384s(コリレーション後)	3.384s(コリレーション後)	3.384s(コリレーション後)	3.384s(コリレーション後)	16s(コリレーション前)	19s(コリレーション前)
サンプジン	ッグ間隔	2ms	2ms	2ms	2ms	2ms	1ms
調査、	方向	南西→北東	南西→北東	南西→北東	北東→南西	北西→南東	南→北
測線が通	る自治体	川越市、川島町	川島町, 上尾市, 桶川市	桶川市, 菖蒲町, 久喜市	加須市, 久喜市, 菖蒲町	行田市, 鴻巣市, 騎西町, 菖蒲町	三島町
- 畢館	年月	平成17年5月	平成19年9月	平成19年2月	平成19年8月	平成21年5月	平成22年12月
	CMP重合数	標準72	標準288	標準288	標準288	標準180	標準78
	CMP番号	$2 \sim 1599$	3 - 1060	3~1755	$18 \sim 1275$	$3 \sim 2925$	$100 \sim 1576$
個別測線	CMP数	1,598	1,058	1,753	1,258	2,923	1,477
データ処理	CMP間隔	5m	5m	5m	5m	5m	5m
	SMP測線長	7990m	5285m	8760m	6285m	14.615km	7.385km
	垂直重合	間隔10mで垂直重合	間隔2.5mで垂直重合	間隔2.5mで垂直重合	間隔2.5mで垂直重合	間隔5mで垂直重合	間隔10mで垂直重合
	測線名	-	-桶川	- 無買	- 加須		
	CMP番号	2~2	2584	3~2	2924		
	CMP数	2,5	83	2,9	322		
結合データの通知	CMP間隔	5r	ш	51	m		
ł	CMP測線長	12.9	11 km	14.6	31km		
	垂直重合	シm01 幽畠	で垂直重合	2w0t鲥閶	で垂直重合		
	測線交点	JII越一桶JIICMP11	130=JII島CMP211	菖蒲-加須CMP1123=	=行田一菖蒲CMP2824	行田一菖蒲CMP2824 =菖蒲一加須CMP1123	川島CMP211 =川越一桶川CMP1130

第1表 反射法地震探査の諸元. Table1 Parameters of seismic reflection surveys. 第2表 測線周辺の坑井データ.各セルの上段は反射断面の上端(基準面標高)からの深度(m),下段の括弧内は 坑井柱状図(坑口から)の深度(m).

Table2 Borehole data around survey lines. Upper numbers of each cell are depth in meter from seismic datum plane and lower numbers in parentheses are depth in meter from borehole columnar section.

坑井名 borehole name		川島 Kawajima	菖蒲 Shobu	鷲宮 Washimiya	行田 Gyoda	大利根 Otone
坑口深度(m) top of borehole	上段は反射断面の上端からの深度下段は坑口からの深度	48 (0)	-2 (0)	1 (0)	-7 (0)	-3 (0)
———— 沖積層基底(m) base of alluvial		76 (28)		26 (25)	3 (10)	
下総層群基底(m) base of Shimosa Group		136 (88)	163 (165)	151 (150)	171 (178)	132 (135)
上越テフラ(m) Joetsu tephra		246 (198)		374 (373)		331 (334)
阿須公園1テフラ(m) Azukoen1 tephra		414 (366)			546 (553)	
鮮新統基底(m) base of Pliocene		635 (587)				
坑底深度(m) borehole depth	0	648 (600)	348 (350)	515 (515)	603 (611)	1502 (1505)
反射断面の基準面標高(m) datum plane elevation of seismic section		60	10	10	10	10
坑口の標高(m) borehole elevation		12	12	9	17	13
CMP測線までの距離 測線名/CMP/距離(m) distance to CMP line line name/CMP/distance(m)		川島/943/ 30m	行田一菖蒲/ 2687/300m 菖蒲一加須/ 1201/700m	菖蒲-加須/ 2600/4km	行田一菖蒲/ 500/4km	菖蒲-加須/ 2924/2.5km