東京低地と中川低地における沖積層のシーケンス層序と古地理

Sequence stratigraphy and paleogeography of the Alluvium in the Tokyo and Nakagawa Lowlands, Kanto Plain, central Japan.

田辺 晋¹·中西利典²·石原与四郎³·宮地良典¹·中島 礼¹

Susumu Tanabe¹, Toshimichi Nakanishi², Yoshiro Ishihara³, Yoshinori Miyachi¹ and Rei Nakashima¹

¹地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation)

²韓国地質資源研究院(Korea Institute of Geoscience and Mineral Resources, Gajeong-dong 30, Yuseong-gu, Daejeon 305-350, Korea)

Daejeon 505-550, Korea)

³福岡大学(Fukuoka University, Nanakuma 8-19-1, Jonan-ku, Fukuoka 814-0180, Japan)

Abstract: In this paper, we revealed the sequence stratigraphy and paleogeography of the Alluvium in the Tokyo and Nakagawa Lowlands on the basis of 18 sediment cores, 467 radiocarbon dates, and 7,021 borehole logs. The Alluvium in the Tokyo and Nakagawa Lowlands consists of 15 sedimentary facies. Based on their facies association, they can be classified as braided river, meandering river, estuary, spit and delta systems. The sequence boundary can be placed at the unconformity between the Shimosa Group and the Alluvium. The transgressive (> 14.1 cal kyr BP) and the maximum flooding (6.4–8.1 cal kyr BP) surfaces are at the braided river/meandering river and the estuary/delta systems boundaries, respectively. The paleogeography of the Tokyo and Nakagawa Lowlands are controlled by the basement morphology, tidal currents, and the shift of the Tonegawa from the Arakawa Lowland to the Nakagawa Lowland at 5 cal kyr BP. The shift of the Tonegawa triggered a regime shift of a delta in the Nakagawa Lowland from a tide-dominated to a river-dominated.

Keywords: Holocene, incised valley, estuary, delta, sedimentary facies, radiocarbon date, Tone River

要旨

本論では、18本のボーリングコア堆積物と467点の 放射性炭素年代値, 7,021本のボーリング柱状図資料 をもとに、東京低地と中川低地の沖積層のシーケンス 層序と古地理をまとめた.東京低地と中川低地の沖積 層は15の堆積相から構成され、これらの堆積相はそ の組み合わせに基づいて、網状河川と蛇行河川、エス チュアリー,砂嘴,デルタシステムに区分される.シ ーケンス層序学的な解釈を適応すると、下総層群と沖 積層の不整合面はシーケンス境界,網状・蛇行河川シ ステム境界は海進面 (> 14.1 cal kyr BP), エスチュア リー・デルタシステム境界は最大海氾濫面(6.4~8.1 cal kyr BP)に相当する.東京低地と中川低地の最終氷 期最盛期以降の古地理は,沖積層の基盤形状とそれに 規制された潮流,そして5 cal kyr BP の荒川低地から 中川低地への利根川の流路変遷に支配されている.特 に利根川の流路変遷は中川低地における潮汐卓越型デ ルタから河川卓越型デルタへの動態変化の引き金とな ったと考えられる.

1. はじめに

東京低地と中川低地は,東に下総台地,西に武蔵野 台地と大宮台地に挟まれた沿岸河口低地であり,主に 利根川と渡良瀬川から供給された土砂によって形成さ れてきた(貝塚, 1979).沖積層の軟弱地盤が分布す る両低地は,首都圏の人口と資産が密集した地帯でも あり,その地下地質の実態把握に基づいた地盤の評価 は,産業立地を選定するうえでも重要である.

筆者らは、2003~2007年にかけて、東京都と埼 玉県、千葉県におけるボーリング柱状図資料を収集 し、7,021本のボーリング柱状図資料に基づいて沖積 層の基盤地形やその内部構造を検討してきた(田辺ほ か、2008a). また、沖積層の基盤形状や内部構造の詳 細を確認するために, 東京低地と中川低地ではこれま で18本のボーリングコア堆積物を採取し,467点の放 射性炭素年代値を測定してきた. これらのボーリング コア堆積物の堆積相サクセションと堆積年代について は、これまでにGS-SK-1 が石原ほか(2004a), TN と HA, DK が石原ほか (2004b), GS-KM-1 が宮地ほか (2004) と田辺ほか (2006a), GS-KNJ-1とGS-KTS-1 が田辺ほか (2006b), GS-AMG-1 が田辺ほか (2006c), MZとSZが田辺ほか (2008b), GS-MUS-1 が田辺ほか (2010a), GS-AHH-1 が田辺ほか (2010b), GS-KS-1 と GS-SMB-1 が田辺 (2011), GS-MHI-1 が中西ほか (2011a), GS-KBH-1 が中西ほか (2011b), GS-ISH-1 とGS-KSM-1が田辺ほか(2012)によって報告されて いる.また、これらのボーリング柱状図資料とボーリ ングコア堆積物に基づく堆積システムとシーケンス層 序については、東京低地を田辺ほか(2008c, 2010c)、 中川低地を田辺ほか(2010a, c)にとりまとめている.

さらに、18本のコア解析に基づく、東京低地と中川低地の古地理や"弥生の小海退"と古地理の関係については、田辺・石原(2013)と田辺(2013)で、それぞれ報告している.

本論では、これまでに報告したデータを用いて、東 京低地と中川低地における沖積層のシーケンス層序と 古地理を総括する.その結果、東京低地と中川低地の 全域における沖積層の地質と構造が3次元的かつ成因 的に説明できるようになり、ボーリング柱状図資料の 正確な解釈も可能になったので、以下に報告する.

2. 地域概説

東京低地は東に下総台地,西に武蔵野台地に挟ま れ,南が東京湾に面した沿岸河口低地である(貝塚, 1979).中川低地は東京低地の北部に位置し,東に下 総台地,西に大宮台地に挟まれる.また,荒川低地は 東京低地の西部に位置し,北に大宮大地,南に武蔵野 台地に挟まれた地域を指す(第1図).これらの沿岸 河口低地は主に近世の東遷以前の利根川と渡良瀬川に よって形成された(貝塚, 1979).

現在の中川低地には東より江戸川,中川,綾瀬川が 分布しており,荒川低地には荒川と隅田川が分布する (第1図).江戸川と隅田川は,それぞれ古くは太日河(お おいがわ)と入間川と呼ばれていた(久保,1994). 太日河と中川,入間川沿いには氾濫原との比高が約3 mにおよぶ明瞭な自然堤防が分布する.東京湾におけ る近世の干拓以前,江戸川と中川の河口にはローブ状 の形態を有したデルタが分布していた.下総台地の南 縁や武蔵野台地の東縁に分布する砂州はこのデルタに よる海岸線の前進の前に形成されたものである(久保, 1994).

東京低地と中川低地、荒川低地の地下には、それ ぞれ最終氷期最盛期に至る海水準低下によって形成さ れた古東京川開析谷と中川開析谷, 荒川開析谷が分布 する(遠藤ほか、1988:田辺ほか、2008a)(第1図). 古東京川開析谷は中川開析谷と荒川開析谷の合流部よ り下流に分布しており,古東京川開析谷と中川開析谷, 荒川開析谷の流域がそれぞれ東京低地と中川低地、荒 川低地に相当する. 古東京川開析谷の分布深度は現在 の荒川河口部において標高-70mにおよぶ(遠藤ほか、 1988). なお、田辺ほか(2008a)と同じ地域の沖積層 基底図を作成した木村ほか(2013)では, TNやGS-AHH-1の立地する埋没段丘の形状が特に大きく異なっ ており、これは木村ほか(2013)がTNやGS-AHH-1 のエスチュアリーシステムに相当するN値5前後の砂 泥層を木下層として解釈しているためである.木村ほ か(2013)は、デルタシステムに相当するN値0前後 の泥層の下限を沖積層の基底として誤認している。そ の他、木村ほか(2013)は、開析谷や埋没段丘の礫層 の下面と上面にみられる,河道のピットホールにおい て形成されたと考えられる比高が5mほどの起伏地 形を,誤った礫層の層厚を類推することによって捨象 している.田辺ほか(2008a)による礫層の上面を採 用したほうが,日本各地から確認されつつあり,本来 的に形成されたと考えられる起伏地形も加味されるう え,礫層の上位の軟弱地盤との工学基盤として適して いると考えられる.木村ほか(2013)などによる誤っ た見解に基づく沖積層基底面の復元とその地震動予測 などへの利用は問題があると考えられる.

東京低地と中川低地の開析谷は、後氷期の海水準上 昇と完新世中期以降の海水準の安定に伴って堆積した 沖積層によって充填されている. この開析谷充填堆積 物は、Matsuda (1974) と松田 (1993) によって、下位 より基底礫層,下部砂泥層,中間砂層,上部泥層,上 部砂層,最上部陸成層に区分された.中間砂層の下位 は下部沖積層,中間砂層より上位は上部沖積層と呼ば れている. さらに、遠藤ほか(1983)は中間砂層を完 新統基底礫層(HBG)と対比し、HBGの下位を七号 地層,HBGより上位を有楽町層に区分した.その一方 で、石原ほか(2004)は、オールコアボーリングによ って東京低地の沖積層を初めて堆積相と堆積システム に区分し、田辺ほか(2008c, 2010c)は、これに調査 地域とデータを拡充することによって、沖積層を下位 より網状河川システム,蛇行河川システム,エスチュ アリーシステム、砂嘴システム、デルタシステムに区 分している.これらのデータを総括したシーケンス層 序の詳細については後述する.田辺ほか(2010c)に よると、おおよそ基底礫層は網状河川システム、下部 砂泥層は蛇行河川システム,中間砂層と上部泥層,上 部砂層、最上部陸成層はエスチュアリーとデルタシス テムに対比され、そのうち、上部泥層はプロデルタ堆 積物,上部砂層はデルタフロント堆積物,最上部陸成 層は現世の河川堆積物を含む.沖積層を上部と下部, もしくは七号地層と有楽町層に区分する場合、木村ほ か(2006)は、その境界をエスチュアリーシステムの 砂質干潟や砂州堆積物と解釈している中間砂層の基底 に相当するラビーンメント面に設定している.また, 近年遠藤ほか(2013)は、七号地層と有楽町層を年代 によって約10 cal kyr BP で区分すべきであると主張し ている.しかし、これらの2部層区分境界は、沖積層 の堆積環境と物性境界といずれも斜交していおり、工 学的な利活用を考えた場合,いずれの案も適切でな いと考えられる. その一方で,田辺ほか (2010c) は, 沖積層を2部層に区分する場合、単純に堆積環境と物 性によって河成の七号地層と海成の有楽町層に区分す べきであると提言している.この場合,網状河川と蛇 行河川システムが七号地層, エスチュアリーとデルタ システムが有楽町層に相当し, 両層の境界は潮汐ラビ ーンメント面,もしくはシーケンス層序学的な解釈に よると,最初に海の影響が確認される初期氾濫面に相 当する. このような境界は、後述するように蛇行河川

システムの氾濫原泥層とエスチュアリーシステムの潮 汐河川砂層もしくは干潟砂層との明瞭な岩相境界に相 当し、ボーリング柱状図資料でも岩相と貝化石の下限 に着目すれば、その区分は可能である.ボーリング柱 状図資料によっては、貝化石などの記載が捨象されて いる場合があるが、今後の調査では、ペネ試料などを 用いて貝化石や生痕化石の有無を確認していけば、比 較的正確かつ簡便に沖積層の区分が可能となる(田辺 ほか、2010c).

東京低地と中川低地における古地理は,後氷期の海 水準上昇に伴って,網状河川から蛇行河川,潮汐河川, 奥東京湾と呼ばれる内湾へと変化した(貝塚,1979; 田辺,2013). 完新世中期の高海水準期における奥東 京湾は栃木市藤岡町付近まで達した.この奥東京湾 は,利根川の流路の変遷によって,5kaまでは荒川低 地,5ka以降は中川低地における埋積がすすみ,海岸 線は湾奥から湾頭へと前進した(貝塚,1979;小杉, 1989;田辺ほか,2008c;田辺,2013).

3. 研究手法

本論では、2003 ~ 2007年にかけて東京低地と中川 低地において掘削・解析された18本のボーリングコ ア堆積物の層相と放射性炭素年代値を用いる.18本の ボーリングコア堆積物の採取位置は第1図に、緯度経 度と標高,掘削長は第1表に示す.全てのボーリング コア堆積物は、スリーブ内蔵二重管サンプラーもしく は三重管サンプラーを用いて採取し、半裁したのちに 岩相(粒度と粒子の支持様式、岩相境界の特徴、堆積 構造)と生物化石相(生痕化石と貝化石の産状と種類、 植物根の有無)に着目した記載を行った.また裸眼で は把握しにくい堆積構造の可視化のために軟エックス 線写真を撮影した.これらの解析手法の詳細について は第1表の論文を参考にされたい.

18本のボーリングコア堆積物からは467点の貝化 石と植物片を採取し、名古屋大学において前処理を行 ったのちに国立環境研究所のタンデム加速器(Yoneda et al., 2004)を用いるか、前処理も含めて(株)Beta Analytic または(株)加速器分析研究所に依頼して、 放射性炭素年代値を測定した.これらの放射性炭素年 代値はCALIB 6.0 (Stuiver et al., 2011)とReimer et al. (2009)のデータセットを使用して暦年代に較正した. 貝化石の暦年較正の際、 ΔR (氾世界的な海洋放射性 炭素年代と地域的な海洋放射性炭素年代の差)(Stuiver and Braziunas, 1993)は0,海洋炭素は100%と仮定した. なお,暦年較正を行っていない年代値については、"BP" と表記する.

ボーリング柱状図資料は田辺ほか(2008a)による 7,021本を使用した.これらの柱状図は北緯35°43[']00 ~~35°36[']30″,東経139°46[']20″~139°54[']52″の 範囲に分布する(第1図).これらのボーリング柱状 図資料のうち数値化した 6,100 本については,石原ほか(2013)の補間方法によってグリッドデータとし, N値と岩相の断面分布を可視化した.

4. 堆積相

18本のボーリングコア堆積物は,岩相と生物化石相, 放射性炭素年代値に基づいて17の堆積相に区分され る(第2図).そのうち堆積相 BR, MR, TR, TF, SB, TS, TM, ES, SP, SM, SS, PD-DF, MT, MF は,下総層群であ る堆積相 SH と埋没段丘礫層である堆積相 BT に不整 合に累重する沖積層と考えられる.なお,堆積相 AS (artificial soil) は人工土壌からなる盛土である.本章 では,田辺ほか(2008c),田辺(2011),田辺ほか(2010a, b, c),田辺ほか(2012) に基づいて,堆積相 AS を除 いた 16 の堆積相の記載と解釈を記す.

4.1 堆積相 SH (下総層群: Shimosa Group)

記載:本堆積相は、シルト層と砂層、礫層から構 成され, GS-KBH-1 において砂層, GS-KS-1 において 泥層, GS-MUS-1 において泥層, GS-MHI-1 において 砂層, GS-SK-1 において砂層, GS-SMB-1 において泥 層, TN において砂層, MZ において泥層, GS-AHH-1 において礫層と泥層, HA において礫層と砂層, GS-KNJ-1 において砂層, GS-AMG-1 において泥層, SZ に おいて砂層, GS-KM-1 において砂層, DK において砂 層, GS-ISH-1 において泥層から構成される.本堆積相 は、GS-KBH-1、GS-KS-1、GS-MHI-1、GS-SK-1、GS-SMB-1の上部, SZ, GS-ISH-1では貝化石や生痕化石 を含まず、植物根がみられるのに対して、GS-MUS-1、 GS-SK-1の下部, TN, MZ, GS-AHH-1, HA, GS-KNJ-1, GS-KM-1, DK では貝化石や生痕化石がみられる. GS-MUS-1 からは 29,690 ± 120 BP の放射性炭素年代 値を示す植物片, GS-SK-1 からは > 48,350 BP の植物 片, GS-AHH-1 からは 37,800 ± 300 BP の植物片, GS-KNJ-1 からは >45.520 BP のバカガイ (Mactra chinensis Philippi), GS-ISH-1からは>43,500 BPの植物片が得 られている. また, TN には生痕化石の Macaronichnus segregatis が多くみられる.

解釈:本堆積相の貝化石と生痕化石を含む層相と含 まない層相は、それぞれ海成層と河成層に対応すると 考えられる. Macaronichnus segregatis は海浜環境の指 標となる(奈良, 1994).また、29.7~48.4 kyr BPの 放射性炭素年代値は、本堆積相が上部更新統であるこ とを示す.本堆積相は、その分布深度に基づいて遠藤 ほか(1983)の下総層群に対比される.

4.2 堆積相 BT (埋没段丘堆積物:Buried terrace deposits)

記載:本堆積相は,礫質もしくは基質支持の礫層から構成され,GS-MUS-1とTNにみられる.基質支持

礫層の基質は中粒砂以上の粒径をもつ砕屑物から構成 されている.よく円摩された礫の最大粒径は50mmで ある.GS-MUS-1では層厚がそれぞれ20~100cmの 礫質支持礫層と基質支持礫層が互層をなす.

解釈:本堆積相は、貝化石や生痕化石を含まない礫 層から構成されることから、河成層と考えられる.また、本堆積相の分布深度は、沖積層の基底礫層(堆積 相 BR)(井関、1975)と比べて浅く、遠藤ほか(1983) の埋没段丘礫層と対比することができる.このような 礫層は、通常、関東ローム層によって覆われる(遠藤 ほか、1983)が、本堆積相の場合、沖積層の海成層に よって覆われ、関東ローム層は削剥されたと考えられ る.

4.3 堆積相 BR (網状河川堆積物 : Braided river sediments)

記載:本堆積相は礫質もしくは基質支持の礫層と 低角な平板状斜交層理や斜交層理のみられる礫質な中 粒~粗粒砂層から構成される.また,この礫層に含ま れる礫はよく円摩されている.基質支持礫層の基質は 中粒砂以上の粒径をもつ砕屑物から構成される.本堆 積相は,GS-KBH-1,GS-KS-1,GS-MHI-1,GS-SK-1, GS-SMB-1,MZ,HA,GS-KNJ-1,GS-AMG-1,GS-KM-1,DK,GS-KSM-1にみられる.

解釈:中粒砂以上の粒径をもつ砕屑物から構成され る本堆積相は、貝化石や生痕化石を伴わないことから、 掃流の影響した河川環境において堆積したと考えられ る.また、礫質支持礫層と基質支持礫層は網状河川堆 積物の主要な構成要素とされている(Miall, 1992).よ って、本堆積相は網状河川堆積物と解釈できる.また、 本堆積相は分布深度にもとづいて、沖積層の基底礫層 (井関, 1975;遠藤ほか, 1983)と対比することができる. 沖積層の基底礫層は開析谷の軸部において下総層群に 不整合に累重する(遠藤ほか, 1983).

4.4 堆積相 MR (蛇行河川堆積物: Meandering river sediments)

記載:本堆積相は、木片や植物根の多くみられる、 泥炭質もしくは塊状のシルト層と極細粒〜粗粒砂層の 互層から構成され、砂層にはトラフ状斜交層理やカ レント・リップル層理、逆グレーディング構造がみら れる. GS-KM-1 の深度 48.0 ~ 45.0 mには、厚層の砂 層がみられ、斜交層理のみられる粗粒砂層からクライ ミング・リップル層理のみられる粗粒砂層からクライ 細粒化する.本堆積相は、GS-KBH-1、GS-KS-1、GS-MHI-1、GS-SK-1、MZ、HA、GS-KSM-1、GS-AMG-1、 GS-KM-1、DK、GS-ISH-1、GS-KSM-1 にみられる.

解釈: 貝化石や生痕化石を伴わず, 植物根が多くみ られることから,本堆積相は河川環境において形成さ れたことが解釈できる.また,逆グレーディング構造 は,自然堤防帯の氾濫原洪水堆積物の示相堆積構造と されている(増田・伊勢屋, 1985). GS-KM-1の深度 48.0~45.0 mの砂層は,中粒砂以上の径をもつ砕屑物 から構成され,上方に細粒化することから,掃流の影 響の減少に伴い埋積した河川チャネルの堆積物と考え られる.本堆積相では,このような氾濫原堆積物と考 によって形成されたと考えられる.このような堆 積相は蛇行河川において特徴的であり(Miall, 1992), 本堆積相は蛇行河川堆積物と解釈できる.

4.5 堆積相 TR (潮汐河川堆積物:Tidal river sediments)

記載:本堆積相は極細粒〜粗粒砂層と砂泥細互層 から構成され,極細粒〜粗粒砂層にはカレント・リ ップル層理,二方向流をしめすカレント・リップル 層理,ヘリンボーン斜交層理がみられる.GS-MHI-1, GS-KNJ-1,GS-AMG-1,GS-KSM-1では,本堆積相は 極細粒〜粗粒砂層から構成され,細粒もしくは粗粒 砂層から,それぞれ極細粒砂層,細粒砂層へと上方 細粒化する.MZでは,層厚が2 cm以下の極細粒〜 中粒砂葉理・層理とシルト葉理・層理の細互層から構 成され,砂層の粒度と層厚が減少することにより,上 方細粒化する.本堆積相からは離弁のヌマコダキガ イ類 (Potamocorbula sp.)とヤマトシジミ (Corbicula japonica Prime),生痕化石,木片が産出する.本堆積 相 はGS-MHI-1,MZ,HA,GS-KNJ-1,GS-AMG-1,GS-KSM-1 にみられる.

解釈:本堆積相には、二方向流をしめすカレント・ リップル層理、ヘリンボーン斜交層理、砂泥細互層が みられることから、潮汐の影響した環境において形 成されたことが解釈できる.また、本堆積相に認め られる上方細粒化傾向は、潮汐河川の埋積などによる 流速の減少をしめしている可能性がある(Dalrymple, 1992).砂泥細互層は潮汐の影響した環境において広 く認められ(Reineck and Singh, 1980)、ヌマコダキガ イ類とヤマトシジミは、それぞれ潮間帯の泥質干潟 と汽水の影響した河口域に特徴的に生息する(奥谷, 2000;中島ほか, 2006).以上のことから、本堆積相 は潮間~潮下帯の潮汐河川堆積物と考えられる.ヌヌ マコダキガイ類は離弁であることから、一部は泥質干 潟からもたらせ、再堆積したと考えられる.

4.6 堆積相 TF (干潟堆積物: Tidal flat sediments)

記載:本堆積相は、シルト層やシルト層と極細粒~ 中粒砂層の互層、層厚が1 cm 以下のシルトの葉理と 極細粒砂の葉理の砂泥細互層、生物攪乱を受けた極細 粒砂層から構成され、ダブル・マッド・ドレイプやカ レント・リップル層理がみられることを特徴とする. 本堆積相からは、合弁のヌマコダキガイ類やヤマトシ ジミが産出する.本堆積相は GS-KBH-1, GS-SK-1, GS- AHH-1, HA, GS-KTS-1, GS-KM-1, DK にみられる.

解釈:砂泥細互層やダブル・マッド・ドレイプがみられ,合弁のヌマコダキガイ類が産出することから,本堆積相は干潟堆積物であることが解釈できる.砂泥 細互層やダブル・マッド・ドレイプは潮汐の影響した 環境において広く認められ (Reineck and Singh, 1980), ヌマコダキガイ類は潮間帯の泥質干潟に特徴的に生息 する (中島ほか, 2006).

4.7 堆積相 SB (砂州堆積物: Sand bar sediments)

記載:本堆積相は GS-MUS-1 と GS-SK-1 にみられ る.本堆積相は, GS-SK-1 においてカキ類(Crassostrea sp.)の点在する礫層, GS-MUS-1 においてカキ類の 密集層から構成される.GS-SK-1 における本堆積相 は、下部の上方粗粒化する極細粒~中粒砂層,中部の 上方細粒化する粗粒砂~中礫層,上部の細粒砂層とシ ルト層の互層に細分できる.下部からはマッド・ク ラストとカキ類の破片,上部からはヒメカノコアサ リ(Veremolpa micra (Pilsbry))などが産出する.GS-MUS-1 における本堆積相は、下部のカキ類の点在する 中粒砂層と上部のカキ類の密集層に細分できる.カキ 類の密集層は、ほとんどがカキ類の破片から構成され、 マッド・クラストが点在する.

解釈:本堆積相からは潮間帯の指標種となるカキ類 (奥谷,2000)が産出するが、そのほとんどが破片で あること、そしてその層相の一部からはヒメカノコア サリなどの潮下帯の指標種(奥谷,2000)が混在して 産出することから、潮下帯において堆積したと考えら れる.カキ類は、潮下帯における水理営力によって破 片となり、マッド・クラストとともに堆積したと考え られる.このような砕屑物が堆積する環境としては、 潮下帯の砂州などが考えられる.

4.8 堆積相 TS (海進砂: Transgressive sand)

記載:本堆積相は MZ と GS-KM-1 にみられる.本 堆積相は離弁の貝化石やマッド・クラストが点在する シルト質の細粒~中粒砂層から構成されており,堆 積相の上部は生物攪乱を受けている.本堆積相から は、ヌマコダキガイ類,バカガイ (*Mactra chinesis* Philippi),バイ (*Babylonia japonica* (Reeve))が産出する. GS-KM-1 には、堆積相を通じてよく円磨された中礫と ヌマコダキガイ類が点在し、堆積相の上部においてバ カガイが点在する.

解釈:本堆積相は、GS-KM-1では堆積相TF(干潟 堆積物)に累重し、後述する堆積相PD-DF(プロ デルタ~デルタフロント堆積物)によって被覆されて いる.また、MZでは堆積相TR(潮汐河川堆積物)に 累重し、後述する堆積相SM(砂嘴縁辺堆積物)によ って被覆されていることから、潮間帯から潮下帯にか けた水深の増加(海進)によって形成されたと考えら れる.GS-KM-1から産出する中礫やヌマコダキガイ類 は潮間帯から潮下帯にかけた水理エネルギーの増加に 伴って、コアサイトに隣接する埋没段丘面や干潟から 再堆積したと考えられる.ヌマコダキガイ類、バカガ イ、バイは、それぞれ潮間帯、潮間帯〜潮下帯、潮下 帯において特徴的に生息する(奥谷、2000;中島ほか、 2006).これらの貝化石がGS-KM-1やMZの堆積相 MZ5において混在するということは、ヌマコダキガイ 類が潮間帯から潮下帯にかけて再堆積したことを意味 する.このようなことから、本堆積相は海進に伴う再 堆積過程で形成された海進砂と解釈される.

4.9 堆積相 TM (潮汐の影響した浅海性堆積物: Tideinfluenced shallow marine sediments)

記載:本堆積相は、シルト〜細粒砂層から構成され ており、砂泥細互層がみられることを特徴とする.砂 泥細互層は層厚が1 cm以下のシルトの葉理と極細粒 〜細粒砂の葉理のリズミカルな互層から構成されて おり、この細互層中にはカレント・リップル層理や ダブルマッドドレイプがみられる.砂泥細互層のみ られないシルト〜細粒砂層中には貝化石や生痕化石 がみられ、一部生物攪乱を受けている.本堆積相か らは、離弁のヌマコダキガイ類やバカガイ、マガキ 類(*Crassostrea* sp.)、ウラカガミ(*Dosinella angulosa* (Philippi))が産出する.本堆積相はGS-KBH-1,GS-KS-1,GS-MUS-1,GS-MHI-1,GS-SMB-1,TN,GS-AHH-1, HA,GS-AMG-1,GS-ISH-1,GS-KSM-1 にみられる.

解釈:本堆積相からは、潮間帯に特徴的に生息する ヌマコダキガイ類や潮間〜潮下帯に特徴的に生息する バカガイとマガキ類、潮下帯に特徴的に生息するウラ カガミが混在して産出する(奥谷,2000;中島ほか、 2006)ことから、潮下帯において形成されたと考え られる.潮間帯の貝化石は潮下帯に再堆積したと考え られる.その一方で、砂泥細互層やダブル・マッド・ ドレイプは潮汐の影響した堆積構造をしめしており (Reineck and Singh, 1980)、本堆積相が潮汐の影響した 浅海において形成されたことを示唆している.

4.10 堆積相 ES (湾口砂州堆積物 : Estuary mouth shoal sediments)

記載:本堆積相は GS-ISH-1 と GS-KSM-1 にみられ る.本堆積相は、GS-KSM-1 において生物攪乱を受け た砂質シルト層から構成され、砂質シルト層中の砂は 極細粒砂の粒径をもつ.また、本堆積相は、GS-ISH-1 において下部より極細粒〜細粒砂層とシルト層から構 成され、同層相には生痕化石がみられる.本堆積相は GS-KSM-1 と GS-ISH-1 において、下位の堆積相 TM に明瞭な境界面を介して累重し、泥分含有率が 40 ~ 100% にかけて変化することで上方細粒化する.GS-KSM-1 からは、汽水生のヌマコダキガイ類、海生の ニオガイ類 (Barnea sp.)、チョノハナガイ (Raetellops pulchellus (Adams et Reeve))、ウラカガミなどが、GS- ISH-1 からは海生のスミスシラゲガイ(*Mitrella yabei* (Nomura)), バカガイ, クサビザラガイ(*Cadella delta* (Yokoyama)) などの貝化石が産出する.本堆積相からは 6,900 ~ 9,500 cal BP の放射性炭素年代値が得られている.

解釈:本堆積相から産出する海生の貝化石はどれも 潮下帯に生息する種であるため(奥谷,2000),本堆 積相は潮下帯において形成されたことが解釈できる. ヌマコダキガイ類などの潮間帯の貝化石は堆積相 TM と同様に潮下帯に再堆積したものと考えられる.ま た,本堆積相の放射性炭素年代は後氷期の海水準上昇 期を示すことから,堆積相 TM からの一連の海進によ って形成されたことが分かる.なお,本堆積相は堆積 相 TM に明瞭な境界面を介して累重し,上方細粒化す ることから,一連の海進によって潮下帯に形成された 海進砂の特徴をもつ(田辺ほか,2006a).本堆積相は, その形態と古地理に基づいて湾口砂州堆積物と解釈で きるが,その詳細については後述する.

4.11 堆積相 SP (砂嘴堆積物: Spit sediments)

記載:本堆積相はGS-KTS-1にみられる.本堆積相 は上方粗粒化する砂質シルト〜中粒砂層から構成され ており,生物撹乱を強く受けている.本堆積相にはマ ッドクラストや貝化石が含まれる.貝化石は、ヌマコ ダキガイ類とバカガイ,ウラカガミ,チョノハナガイ, シラトリガイ類 (Macoma sp.),クサビザラ,モモノ ハナガイ類 (Moerella sp.),ツキガイモドキ (Lucinoma annulatum (Reeve)),マテガイ類 (Solen sp.),キサゴ類 (Umbonium sp.)からなる.

解釈:本堆積相からは、潮間帯に特徴的に生息する ヌマコダキガイ類や潮間〜潮下帯に特徴的に生息する バカガイ、シラトリガイ類、モモノハナガイ類、マテ ガイ類、キサゴ類、潮下帯に特徴的に生息するウラカ ガミ、チョノハナガイ、クサビザラ、ツキガイモドキ(奥 谷、2000;中島ほか、2006)が混在して産出すること から、潮下帯において形成されたと考えられる.本堆 積相は、その形態と古地理に基づいて砂嘴堆積物と解 釈できるが、その詳細については後述する.

4.12 堆積相 SM (砂嘴縁辺堆積物: Spit margin sediments)

記載:本堆積相は MZ と GS-KNJ-1 にみられる.本 堆積相は上方細粒化する砂泥互層もしくは砂泥細互層 から構成されており、これらの層相にはカレント・リ ップル層理、二方向流をしめすカレント・リップル層 理、ダブル・マッド・ドレイプがみられる.砂層は極 細粒~中粒砂、泥層はシルトの粒径をもつ砕屑物から 構成される.本堆積相からは、ヌマコダキガイ類、バ カガイ、クサビザラ、マテガイ類、ナミガイ (Panopea japonica A. Adams)、アサリ (Ruditapes philippinarum (Adams et Reeve))、ヒメカノコアサリ、マメクルミ ガイ (*Nucula paulula* A. Adams), ヒメマスオガイ (*Cryptomya busoensis* Yokoyama) が産出する.

解釈:二方向流をしめすカレント・リップル層理 やダブル・マッド・ドレイプは潮汐の影響をしめす (Reineck and Singh, 1980).また、ヌマコダキガイ類は 潮間帯、ナミガイ、アサリ、ヒメカノコアサリ、マメ クルミガイ、マテガイ類、ヒメマスオガイ、バカガイ は潮間〜潮下帯、クサビザラは潮下帯に特徴的に生息 する(奥谷、2000;中島ほか、2006)ことから、本堆 積相は潮下帯において形成されたと考えられる.潮間 帯の貝化石は潮下帯に運ばれたと考えられる.本堆積 相は、後述するように、砂嘴堆積物の縁辺に分布する ことから、砂嘴縁辺堆積物と解釈することができる.

4.13 堆積相 SS(サンドショール堆積物 : Sand shoal sediments)

記載:本堆積相は MZ にみられる.本堆積相は上 方細粒化する砂層と砂泥細互層から構成され,砂層 は細粒〜粗粒の粒径をもつ砕屑物から構成されてい る.本堆積相からはバカガイ,ヒメカノコアサリ,キ サゴ類,アサリ,ヒメマスオガイ,マツヤマワスレ (*Callista chinensis* (Holten)),ハマグリ (*Meretrix lusoria* (Röding)) が産出する.

解釈:本堆積相からは、潮間〜潮下帯に特徴的に生 息するバカガイ、ヒメカノコアサリ、キサゴ類、ハマ グリ、アサリ、ヒメマスオガイと潮下帯に特徴的に生 息するマツヤマワスレ(奥谷,2000)が混在して産出 することから、潮下帯において形成されたと考えられ る.本堆積相は、その形態と古地理に基づいて砂嘴堆 積物から派生したサンドショール堆積物と解釈できる が、その詳細については後述する.

4.14 堆積相 PD — DF(プロデルタ~デルタフロント堆 積物 : Prodelta to deltafront sediments)

記載:本堆積相は、シルト層から、砂泥互層もしく は細粒~中粒砂層へと上方粗粒化する層相から構成さ れている.本堆積相には、カレント・リップル層理、 二方向流をしめすカレント・リップル層理、貝化石、 生痕化石、生物攪乱、木片がみられる.貝化石はウラ カガミ、ヒメマスオガイ、チョノハナガイ、ヌマコダ キガイ類、バカガイ、オオノガイ (Mya japonica Jay)、 バイから構成されており、生痕化石はアナジャコ類な どによって形成されたと考えられる Psilonichnus isp. を含む.木片の含有量は本堆積相の下部から上部に 向かって増加する.本堆積相はGS-KBH-1,GS-KS-1, GS-MUS-1,GS-MHI-1,GS-SK-1,GS-SMB-1,TN,GS-AHH-1,HA,GS-KNJ-1,GS-AMG-1,SZ,GS-KM-1,DK, GS-ISH-1,GS-KSM-1にみられる.

解釈:本堆積相は,上方粗粒化し,木片の含有量が 下部から上部に向かって増加することから,デルタな どの河口の前進に伴う河川の影響の増加によって形成 されたと考えられる(Bhattacharya and Walker, 1992). ヌマコダキガイ類とオオノガイは潮間帯, ヒメマスオ ガイとバカガイは潮間〜潮下帯, ウラカガミとチョノ ハナガイ, バイは潮下帯に特徴的に生息する(奥谷, 2000;中島ほか, 2006)ことから,潮間帯の貝化石は 潮下帯に再堆積したと考えられる.このようなことか ら,本堆積相はプロデルタ〜デルタフロントで形成さ れた堆積物と解釈できる.

4.15 堆積相 MT (現世の干潟堆積物 : Modern tidal flat sediments)

記載:本堆積相は TN, GS-AHH-1, HA, GS-AMG-1, GS-ISH-1にみられる.本堆積相は生痕化石と生物攪乱, 植物根のみられるシルト〜粗粒砂層から構成され,砂 層中にはカレント・リップル層理がみられる.

解釈:本堆積相からは生痕化石と植物根が混在して 産出することから、塩水湿地のような汽水環境におい て形成されたと考えられる.本堆積相は地表面もしく は盛土の直下にみられることから、現世の干潟堆積物 と解釈される.

4.16 堆積相 MF (現世の河川堆積物: Modern fluvial sediments)

記載:本堆積相は,植物根のみられるシルト層と 粗粒もしくは中粒砂から細粒砂へと上方細粒化する砂 層から構成され,シルト層中には逆グレーディング構 造のみられる砂層,砂層中にはカレント・リップル 層理とマッド・クラストがみられる.本堆積相はGS-KBH-1,GS-KS-1,GS-MUS-1,GS-MHI-1,GS-SK-1,GS-SMB-1,MZ,GS-KNJ-1,GS-KTS-1にみられる.

解釈:本堆積相のシルト層には植物根や逆グレーデ ィング構造がみられ,盛土の直下の地表面を構成して いることから,氾濫原堆積物と考えられる.逆グレー ディング構造は,自然堤防帯の氾濫原洪水堆積物の示 相堆積構造とされている(増田・伊勢屋,1985).また, 本堆積相の砂層は上方細粒化し,氾濫原の泥層へと岩 相が漸移変化することから,河川チャネルの埋積に伴 う堆積物と考えられる.これらのことから,本堆積相 は地表面もしくは盛土の直下にみられることから,現 世の河川堆積物と解釈される.

5. 放射性炭素年代值

18本のボーリングコア堆積物から得られた467点の 貝化石,ウニ,木片,植物片,植物根の放射性炭素年 代値を第2表に示す.これらの年代値は、GS-MUS-1 の深度34.2 m (32,840±130 BP)と39.3 m (29,690± 120 BP),GS-SK-1の深度58.7 m (>48,350 BP),GS-AHH-1の深度22.6 m (37,800±300 BP),GS-KNJ-1の 深度69.5 m (>45,520 BP),GS-ISH-1の深度58.6 m (> 43,500 BP)と59.9 m (>43,500 BP)から得られたも のを除き,最終氷期最盛期以降の放射性炭素年代値 (0~14,250 cal BP)を有する.GS-KBH-1,GS-MUS-1, GS-MHI-1,GS-SK-1,GS-SMB-1,TN,MZ,GS-AHH-1, HA,GS-KNJ-1,GS-AMG-1,GS-KTS-1,GS-KM-1,DK, GS-ISH-1,GS-KSM-1の沖積層から得られた年代試料 については、その標高と年代値をプロットし、堆積曲 線を作成した(第3図).なお、これらの堆積曲線の 作成にあたって、堆積物の圧密効果は考慮していない. 第3図は、多くのボーリングコア堆積物において、堆 積曲線より1000年程度古い、すなわち再堆積した年 代値が存在することを示す.なお、GS-KNJ-1の堆積 相 SM からは、多くの再堆積した貝化石が得られてお り、それらは堆積曲線よりも最大で4500年古い.

6. 堆積システム

18本のボーリングコア堆積物から認定した沖積層 の15の堆積相は、その組み合わせに基づいて5つの 堆積システムに区分される(第4図).また、それら の堆積システムはボーリング柱状図資料との対比によ ってその空間分布を把握することができる(第5図). 沖積層は下総層群と埋没段丘礫層に不整合に累重する と考えられる.本章では、これらの5つの堆積システ ムの記載と解釈を記す.

6.1 網状河川システム

記載:本堆積システムは堆積相 BR (網状河川堆積物) の礫層と礫質な砂層から構成されている.本堆積シス テムは,沖積層の開析谷軸部の GS-ISH-1 において> 43,500 BP の放射性炭素年代値を有する堆積相 SH (下 総層群)に累重し,GS-KNJ-1 において 14,070 cal BP よりも若い放射性炭素年代値を有する堆積相 MR (蛇 行河川堆積物)によって覆われる.本堆積システムは 標高 -65 ~ -50 m に分布する N 値 40 以上の砂礫層と 対比することができる (第5 図).

解釈:本堆積システムは,掃流が卓越した網状河川 堆積物から構成され,これと対比できる堆積物が開析 谷底に広く分布することから,網状河川システムと解 釈することができる.本堆積システムの堆積年代は> 43,500 BP ~ 14,070 cal BP を示し,井関(1975)や遠 藤ほか(1983)の沖積層の基底礫層と対比できること から,下総層群に不整合に累重すると考えられる.

6.2 蛇行河川システム

記載:本堆積システムは,堆積相 MR(蛇行河川堆 積物)の植物根と逆グレーディング構造のみられる砂 泥互層と上方細粒化する砂層の互層から構成されてい る.そして,これらの層相は,標高-60~-35 m に分 布する N 値 20 以上の砂層と N 値 10 以上の泥層に対 比することができる(第5図).本堆積システムは 9.3 ~ 14.1 cal kyr BP の堆積年代を示す. 解釈:本堆積システムは、氾濫原において形成され た砂泥互層と河川チャネルにおいて形成された砂層の 互層から構成されており、このような堆積相サクセシ ョンは、河道の側方移動によって形成されたと考えら れる.よって、本堆積システムは蛇行河川システムに おいて形成されたと考えられる.本堆積システムはア グラデーショナルにリトログラデーションする累重様 式を示す(第4図).

6.3 エスチュアリーシステム

記載:本堆積システムは、下位より堆積相TR(潮 汐河川堆積物)の上方細粒化する砂層と砂泥細互層、 堆積相TF(干潟堆積物)の砂泥細互層と砂層、堆積 相SB(砂州堆積物)の貝殻密集層、堆積相TS(海進 砂)の上方細粒化するシルト質砂層、堆積相TS(海進 砂)の上方細粒化するシルト質砂層、堆積相TM(潮 汐の影響した浅海成堆積物)の砂泥細互層とシルト層、 堆積相ES(湾口砂州堆積物)の上方細流化する砂泥層、 から構成されており、二方向流をしめすカレント・リ ップル層理やダブルマッドドレイプ、貝化石、生痕化 石がみられることを特徴とする.これらの堆積相の組 み合わせは、標高-45~-15mに分布するN値4以上 の砂泥層に対比することができる(第5図).本堆積 システムは6.5~9.9 cal kyr BPの堆積年代を示す.

解釈:本堆積システムを構成する堆積相は,複数の ボーリングコア堆積物において,潮間〜潮下帯におい て形成された堆積相 TR と TF から,潮下帯において 形成された堆積相 TM と TS, ES へと,上方深海化を しめすことから,海進に伴いリトログラデーションす るエスチュアリーシステム(Boyd et al., 1992)である ことが解釈できる.なお,DK と GS-KSM-1において エスチュアリーシステムの最上部を構成する堆積相 ES は,同時間線が示す起伏地形から湾口砂州堆積物と解 釈することができる(第4図)(田辺ほか, 2012).

6.4 砂嘴システム

記載:本堆積システムは、堆積相 SP(砂嘴堆積物) の砂層とシルト層、堆積相 SM(砂嘴縁辺堆積物)の 上方細粒化する砂泥互層、堆積相 SS(サンドショー ル堆積物)の上方細粒化する砂層と砂泥互層、から構 成され、堆積相 SMには二方向流をしめすカレント・ リップル層理やダブルマッドドレイプがみられる.ま た、貝化石や生痕化石は本堆積システムを通じて産出 する.これらの堆積相の組み合わせのうち、堆積相 SPは下総台地の西縁から北西方向に伸長する N値 10 ~30の砂層、堆積相 SM は堆積相 SPの周辺に分布す る N値4~10の砂泥層、堆積相 SS は堆積相 SPから 北に伸長する N値 10~20の砂層に対比することがで きる.これらの堆積相は標高-35~5 mに分布する(第 5 図).本堆積システムは 3.3~9.5 cal kyr BPの堆積年 代を示す.

解釈:本堆積システムを構成する堆積相は、「堆積相」

の章において述べたように、産出する貝化石によって、 いずれも潮下帯の水深において形成されたことが分か る. 堆積相 SP と対比できる砂層は、ボーリング柱状 図資料の N 値と岩相分布との対比をもとに、下総台地 から北西に伸長する砂嘴を構成していたと考えられる (第5図). 堆積相 SM についてはこのような砂嘴の周 辺に分布し、潮汐の影響した堆積構造がみられること から、潮汐の影響した砂嘴縁辺堆積物と呼ぶことがで きる(第5図). 堆積相 SS は、その岩相と分布が堆積 相 SP や堆積相 SM とは異なり、独立した砂体を構成 していることから、サンドショール堆積物と呼ぶ(第 5 図). サンドショール堆積物は砂嘴の背後に分布した 潮流路において浅い瀬を形成していたと考えられてい る(田辺ほか、2008c). 本研究では、デルタシステム と比べて砂質なこれら堆積物を砂嘴システムと呼ぶ.

6.5 デルタシステム

記載:本堆積システムは、下位より堆積相 PD - DF (プロデルタ~デルタフロント堆積物)の上方粗粒 化するシルト層と砂層,堆積相 MT (現世の干潟堆積物) の生痕化石と植物根のみられる砂層とシルト層,堆積 相 MF (現世の河川堆積物)の植物根のみられるシル ト層と上方細粒化する砂層,盛土から構成されており, 堆積相 PD - DF には貝化石と生痕化石がみられる. 堆積相 PD - DF は N 値 0 ~ 10 の泥層と砂泥層,堆積 相 MT と MF は N 値 2 ~ 20 の砂層と泥層に対比する ことができる(第5図).これらの堆積相は標高-30 m から地表面にかけて分布する.本堆積システムは 0 ~ 6.8 cal kyr BP の堆積年代を示す.

解釈:本堆積システムの堆積相サクセションは,複数のボーリングコア堆積物において,潮下帯の水深をしめす堆積相 PD – DF から陸成の堆積相 MF と盛土にかけて上方浅海化することから,海退に伴いプログラデーションするデルタシステム (Boyd et al., 1992)であることが解釈できる.

7. シーケンス層序

東京低地と中川低地の開析谷軸部における沖積層 は、ボーリングコア堆積物の堆積相の解釈、同時間線、 奥東京湾地域の最終氷期最盛期以降の海水準変動と関 連した沖積層の堆積システムの累重様式に基づき、シ ーケンス層序学的に解釈することができる.本章では、 第4図に基づき、中川開析谷と荒川開析谷における地 層のシーケンス層序学的な解釈を記載する.

7.1 シーケンス境界

中川開析谷と荒川開析谷におけるシーケンス境界 は、下総層群と最終氷期最盛期までに堆積したと考え られる網状河川システムの境界の不整合面に認定する ことができる.網状河川システムからは直接放射性炭 素年代値が得られていないものの, GS-ISH-1 における 下総層群から > 43,500 BP, GS-KNJ-1 の蛇行河川シス テムの基底付近から 14.1 cal kyr BP の放射性炭素年代 値が得られている.従って,シーケンス境界は海洋酸 素同位体ステージ3から最終氷期最盛期にかけた海水 準の低下によって形成されたと考えられる.

シーケンス境界に累重する沖積層の網状河川システムと蛇行河川システム,エスチュアリーシステム,砂 嘴システム,デルタシステムは、1回の海進・海退サ イクル(シーケンス)を形成している.

7.2 海進面

海進面はプログラデーションまたはアグラデーショ ンする低海水準期堆積体とリトログラデーションする 海進期堆積体を分離する氾濫面として定義されている (van Wagoner et al., 1988).本論では, Hori et al. (2002) や Tanabe et al. (2006)にもとづき,海進面を礫質な網 状河川システムとアグラデーションする蛇行河川シス テムの境界に設定する.

中川開析谷と荒川開析谷では,海進面は礫質な網状 河川システムと砂泥互層からなる蛇行河川システムの 境界に分布する.礫層と礫質な砂層から構成される網 状河川システムは、GS-KNJ-1の蛇行河川システムの 基底から得られた放射性炭素年代値の14.1 cal kyr BP より前に形成された. その一方で, 河川チャネルの砂 層と氾濫原の泥層から構成される蛇行河川システムは 14.1 cal kyr BP 以降に形成された. 網状河川システム と蛇行河川システムの境界の年代については、網状河 川システムからの放射性炭素年代値が得られないと詳 細な議論はできないものの, 14.1 cal kyr BP の直前に 形成されたと考えられる. この時期はほぼ融氷パルス 1A (Fairbanks, 1989) の時期と一致し、海進面が融氷 パルス1Aと関連して形成されたことを示唆する.融 氷パルス 1A では約 500 年間に海水準が 30 m 以上も上 昇した.従って、この上昇に伴って海岸線が内陸に大 きく後退し、直接海の影響のない内陸部においても、 低海水準期の癒着する礫質網状河川システムから海進 期のアグラデーションする蛇行河川システムへと、堆 積システムが変化した可能性がある.

7.3 海進による侵食面

中川開析谷と荒川開析谷では,蛇行河川とエスチュ アリーシステム境界やエスチュアリーシステムの内部 において,最終氷期最盛期以降の海水準上昇に伴う侵 食面をいくつか確認することができる.

なかでも蛇行河川とエスチュアリーシステム境界は 初期氾濫面として認定することができる."初期氾濫 面"は、Zaitlin et al. (1994)の"initial flooding surface" を和訳したものであり、河成層に累重する汽水成層や 海成層の始まりを意味する面として使用する.この 境界は、GS-KBH-1とGS-KM-1、DKでは干潟堆積物 の基底に認められる小規模な潮汐ラビーンメント面 (Allen and Posamentier, 1993), GS-MHI-1, MZ, GS-KNJ-1, GS-KSM-1, GS-AMG-1, HA では潮汐河川堆積 物の基底に認められる潮汐ラビーンメント面に相当す る(田辺ほか, 2010c, 2012). 初期氾濫面の形成年代は, 9.3 ~ 11.5 cal kyr BP で,奥東京湾地域において海水準 の上昇速度が増加した時期(9.8 ~ 10.5 cal kyr BP)と ほぼ一致する.よって,初期氾濫面は,海水準の上昇 速度の増加に伴い,アグラデーショナルかつリトログ ラデーショナルな蛇行河川システムからリトログラデ ーションするエスチュアリーシステムへと堆積システ ムが急変したことによって形成されたと考えられる.

GS-KBH-1とGS-MHI-1, GS-AMG-1とHAにおけ る潮汐河川堆積物もしくは干潟堆積物と潮汐の影響し た浅海成堆積物の境界, GS-KNJ-1 と GS-KTS-1 にお けるエスチュアリーと砂嘴システム境界, GS-KM-1 と MZ における干潟堆積物もしくは潮汐河川堆積物と 海進砂の境界, DK と GS-KSM-1 における干潟堆積物 もしくは潮汐の影響した浅海成堆積物と湾口砂州堆積 物の境界は、潮流侵食面として認定することができ る. 潮流侵食面は潮下帯における深海化に伴って潮流 によって形成された侵食面と考えられている(田辺, 2013). この潮流侵食面は後述するように海釜の地形 的凹みにおいて形成されたと考えられる. なお, これ まで田辺ほか(2008c, 2010c, 2012)は、この侵食面を 波浪ラビーンメント面(Catuneanu, 2006)としてきたが、 各コアにおけるその約9 cal kyr BP の同時性(第4図), そしてその古水深(第3図)から,潮間帯よりも潮下 帯において形成されたと考えられる. GS-KM-1, GS-KTS-1, GS-KNJ-1, GS-AMG-1, MZの潮流侵食面の上 位からは潮間帯から再堆積したと考えられるヌマコダ キガイ類やヤマトシジミが産出し,GS-KM-1やGS-KNJ-1 からは近隣の標高 -30 m 付近に分布する埋没段 丘(第1図)から再堆積したと考えられる中礫が産出 する(田辺ほか, 2008c). 潮流侵食面の形成年代は, 6.7~10.2 cal kyr BP で、奥東京湾地域において海水準 の上昇速度が低下した時期(9.8 cal kyr BP 以降)とほ ぼ一致する.通常、海水準の上昇速度が低下すると、 土砂供給の影響が相対的に増加し、ある場所の古水深 は小さくなるが、ここでは、海水準の上昇速度が低下 しても、全てのコアサイトの古水深は急速に深くなる (第3図). コアサイトの古水深の急速な深化は、開析 谷が埋積され, 堆積空間が標高-40~-30mの埋没段 丘面上(第1図)に広がったことによると考えられる.

7.4 最大海氾濫面

最大海氾濫面は、リトログラデーションする海進期 堆積体とプログラデーションする高海水準期堆積体を 分離する氾濫面として定義されており(van Wagoner et al., 1988)、中川開析谷と荒川開析谷ではエスチュアリ ーと砂嘴システム、もしくはエスチュアリーとデルタ

システムの境界や砂嘴システムのなかに認定すること ができる.最大海氾濫面は、中川開析谷において 6.4 ~ 6.7 cal kyr BP, 荒川開析谷において 6.7~ 8.0 cal kyr BP, 下総台地の西縁の砂嘴システムにおいて 6.5~ 6.9 cal kyr BP に形成された.中川開析谷と荒川開析谷 は利根川と荒川、砂嘴システムは下総台地と、それぞ れ異なる土砂供給源を有していた(田辺ほか,2008c) ことから、最大海氾濫面の年代は異なると考えられる. 最大海氾濫面の下位では堆積相は上方深海化のサクセ ションをしめし、同面の上位では堆積相はデルタや砂 嘴の前進による上方浅海化のサクセションを示す. 最 大海氾濫面における堆積相境界は漸移的変化を示すこ とが多い. GS-KM-1やGS-KTS-1, MZ, GS-MHI-1, GS-KBH-1, HA, GS-AMG-1 における最大海氾濫面の 直上の上方細粒化サクセション(第2図)は、 デルタ や砂嘴の前進によって、シルトの供給が卓越したため に生じたと考えられる.GS-KNJ-1における最大海氾 濫面は, エスチュアリーと砂嘴システム境界の潮流侵 食面に分布し、明瞭な岩相境界を有する. なお、エス チュアリーシステムとデルタシステムの境界である最 大海氾濫面を境として, 岩相がその下位で上方細粒化, その上位で上方粗粒化するとは限らない. このような 粒度変化のトレンドが見られるのは、DK などの一部 のコアにおいてのみであり、ほとんどのコアでは粒度 の最も細かい層準がプロデルタの泥層の中部に存在す る.

7.5 低海水準期堆積体, 海進期堆積体, 高海水準期堆 積体

低海水準期堆積体は、中川開析谷と荒川開析谷にお いて癒着した網状河川システムから構成され、14.1 cal kyr BPよりも古い年代値を有する.この時期は、最終 氷期最盛期以降、海水準が最も低かった、もしくは緩 やかに上昇する時期にあたる(Lambeck and Chappell、 2001).14.1 ~ 14.7 cal kyr BPにおきた融氷パルス1A (Fairbanks, 1989)は、癒着した網状河川システムから アグラデーショナルな蛇行河川システムへの遷移時期 とほぼ一致する.

海進期堆積体は、アグラデーショナルな蛇行河川シ ステムとリトログラデーショナルなエスチュアリーシ ステム、アグラデーショナルにリトログラデーション する砂嘴システムから構成され、6.4 ~ 14.1 cal kyr BP の年代値を有する.アグラデーショナルにリトログラ デーションする砂嘴システムは、MZ、GS-KNJ-1、GS-KTS-1 にのみ分布し、下総台地の西縁に局所的な堆積 体を形成する.

高海水準期堆積体は、プログラデーショナルなデル タシステムと砂嘴システムから構成され、0~8.1 cal kyr BPの年代値を有する.この時期は、完新世の海水 準高頂期以降の海水準が緩やかに低下する時期とほぼ 一致する.プログラデーションする砂嘴システムは、 **GS-KTS-1, GS-KNJ-1, MZ** などの下総台地の西縁に おいてのみ認められる.

8. 古地理

東京低地と中川低地における最終氷期最盛期以降の 古地理は、沖積層の基盤形状と18本のボーリングコ ア堆積物から認定した堆積相とその堆積年代、ボーリ ングコア堆積物の放射性炭素年代値から計算した古水 深をもとに復元できる.以下、田辺(2013)による第 6図に基づいて最終氷期最盛期からの古地理の変遷を 説明する.

14 cal. kyr BP (ka) 以前,東京低地と中川低地には開 析谷の軸部に沿って網状河川が分布していた.この礫 質な網状河川堆積物は,最終氷期最盛期の低海水準 期(井関,1975)に形成されたと考えられる.ただし, 本調査地域では,網状河川堆積物から直接放射性炭素 年代値が得られておらず,その形成年代に関しては 更なる検討が必要である.この網状河川堆積物はGS-SMB-1 にも存在する(田辺,2011)ことから,GS-SMB-1 の位置する綾瀬川開析谷にも網状河川は存在し たと考えられる.その一方で,GS-ISH-1の位置する浦 安開析谷には網状河川は存在していなかった(田辺ほ か,2012).

14 ka 以降,後氷期の海水準上昇に伴い,東京低地 と中川低地には蛇行河川と氾濫原が分布した.この蛇 行河川と氾濫原は海水準の上昇に伴い,本調査地域 では10 ka にかけて内陸に拡大する.この蛇行河川堆 積物はGS-SMB-1 やGS-ISH-1 にも分布する(田辺, 2011;田辺ほか,2012)ことから,綾瀬川開析谷や浦 安開析谷などの枝谷でもそれなりの土砂供給があった と考えられる.蛇行河川堆積物は氾濫原の泥層が卓越 した砂泥互層から構成されており,河川チャネル砂層 の多くは垂直方向への累重様式(アナストモーズ)を 示す.従って,この時期の蛇行河川は,あまり破堤も せず,湾曲もしていなかったと考えられる(田辺ほか, 2008c,2010a).

11 ka 以降,更なる海水準の上昇に伴い,東京低地と 中川低地には干潟,潮汐河川,内湾が分布した.海水 準の上昇に伴い干潟は内陸に拡大し,開析谷の軸部に は潮汐河川が分布した.この潮汐河川は GS-KNJ-1 に おいて水深 12 m を示し,三方向流を示す斜交層理な どの見られる砂層で充填される(田辺ほか,2006b). その一方で,綾瀬川開析谷や浦安開析谷では,中川開 析谷や荒川開析谷と比べ供給土砂に乏しいことから, 10 ka 頃より内湾が分布した.この内湾は潮汐の影響 した浅海成堆積物で充填される(田辺,2011;田辺ほか, 2012).

9ka,本調査地域の多くは潮汐の影響した内湾にあった.古東京川開析谷と中川開析谷の軸部には,11kaの潮汐河川の流路に沿って,潮流による海釜が形

成された.この海釜では堆積速度が極めて遅く,不 淘汰な海進砂層が堆積した(田辺ほか,2006a,2008c, 2012).海釜の基底には潮流侵食面が形成された(田辺, 2013)また,GS-KSM-1の位置する湾口部には下げ潮 によって湾口砂州が形成された(田辺ほか,2012). その一方で,GS-AMG-1,HA,GS-AHH-1の位置す る荒川開析谷の末端では、5kaにかけて潮汐の影響し た浅海成堆積物の砂質堆積物が急速に堆積した(第4 図)(田辺ほか,2008c).中川開析谷にはこのような 砂質堆積物が存在しないことから,この時期,利根川 の主要な流路は荒川開析谷を流下していたと考えられ る(田辺ほか,2008c).荒川開析谷に供給された土砂 のうち,泥質堆積物は潮流によって中川開析谷に運搬 され、主に開析谷の西縁のTN,GS-SMB-1,GS-SK-1, GS-KBH-1などに堆積した.

7ka,東京低地と中川低地では海水準が+2~3mの 高頂に達した(遠藤ほか,1989).この時期,潮流に よる海釜はより内陸まで達したと考えられる.また, 湾口砂州は,湾口がGS-KSM-1付近からGS-KTS-1付 近に後退したことにより内陸に後退し,内湾の拡大に 伴う下げ潮の影響の増加により発達した(田辺ほか, 2012).9ka以降,下総台地の南縁では,SZの位置す る段丘の沈水によって沿岸流が発生し,GS-KTS-1に かけて砂嘴が形成された.この砂嘴堆積物は下総台地 を構成する砂によって形成されたと考えられる(田辺 ほか,2006b).

5 kaにかけて、利根川の供給土砂によって荒川開析 谷は急速に埋積され、GS-AHH-1やTN、GS-SMB-1は 干潟になった(田辺ほか、2008c;田辺ほか、2010b; 田辺、2011). 荒川開析谷が埋積される間、数回のデ ルタローブのシフトがあったと考えられる(田辺ほか、 2010b). その一方で、中川開析谷では潮流で運搬され た泥質堆積物が開析谷の西縁のみならずGS-KS-1など の東縁でも堆積するようになった. これらの泥質堆積 物はプロデルタ堆積物として区分されているが、5 ka 以降のプロデルタ堆積物として区分されているが、5 ka 以降のプロデルタ堆積物と異なり上方細粒化する(田 辺、2011;田辺ほか、2010a;中西ほか、2011a,b). こ のような中川開析谷における内湾の縮小により、7 ka と比べて潮流の影響は減少し、海釜はGS-KM-1とMZ に残されるのみとなった(田辺ほか、2008c).

5 ka 以降,利根川は中川開析谷に流路を変遷したと 考えられ(田辺ほか,2008c),中川開析谷の狭長な内 湾は上方粗粒化する潮汐の影響したデルタ成堆積物に より急速に埋積された(第4図)(田辺ほか,2010a, c).この当時,中川開析谷は西縁より埋積が進行し(田 辺ほか,2010a),約3.5 kaまでにその埋積が完了し た.また,この中川開析谷の埋積には,元荒川を流下 していた荒川の土砂供給が寄与していた可能性がある (Kubo,2012).4 ka,GS-KNJ-1とMZには砂嘴から派 生した砂嘴縁辺堆積物とサンドショール堆積物が潮流 の影響によって堆積した(田辺ほか,2008c).また, GS-KNM-1やDK, GS-KM-1には、湾口から離れてい るにも関わらず、下げ潮の影響によってプロデルタの 泥質堆積物が堆積した.

3 ka, 荒川開析谷では干潟が分布したままになって いたのに対し、中川開析谷の北限では利根川の卓越し た土砂供給によって河川と氾濫原が分布した. 中川開 析谷のほとんどのコア地点では河川チャネル堆積物が 干潟堆積物を削剥して分布すると考えられる(田辺ほ か、2010a). この河川チャネル堆積物は広範囲に水平 に分布する(田辺ほか, 2010a)ことから, 当時の河 川チャネルは流路変遷や破堤を繰り返していたと考え られる. 3.5 ka までに中川開析谷の狭長な内湾が埋積 されてからは現在の江戸川河口部のようなローブ状の 形態を有するデルタが発生したと考えられる.この デルタ成堆積物は潮汐の影響の無い層相から構成さ れており, GS-KSM-1とDK, GS-KM-1, GS-ISH-1, SK のみに分布する(田辺ほか, 2008c, 2012) ことか ら、その発生地点は4 ka の湾口辺りと考えられる.ま た, HA にかけては入り江が分布していた(田辺ほか, 2008c).

1 kaの古地理は久保(1994)を参考にした.この当時, 中川低地には東から太日河、古利根川、元荒川、綾瀬 川が流下していた. これらの河道はほぼ固定されてい たと考えられ、中川低地のほとんどのコア地点では氾 濫原堆積物が堆積している(田辺ほか, 2010a). その 一方, 荒川低地では干潟が離水し, 海成段丘が形成さ れたと考えられる(田辺ほか, 2010b). 荒川低地には 中川低地のような現世の河成堆積物は分布せず,GS-AHH-1 などにおいて地表面直下を現世の干潟堆積物が 構成する(田辺ほか, 2010b). 久保(1994)では、こ れら海成段丘を自然堤防として図示しているが、入間 川沿い以外の自然堤防は、河道に沿って分布しないこ とや自然堤防にしてはその形状が団子状であることな どから、海成段丘とするのが妥当であると考えられる. なお、この海成段丘の形成には3~1 kaの海水準の低 下が要因として考えられる.3~1kaにかけて江戸川 河口のデルタのローブはやや東にシフトした.

9. まとめ

(1) 下総層群や埋没段丘礫層に不整合に累重する沖 積層は、下位より堆積相 BR (網状河川堆積物),堆積 相 MR (蛇行河川堆積物),堆積相 TR (潮汐河川堆積 物),堆積相 TF (干潟堆積物),堆積相 SB (砂州堆積 物),堆積相 TS (海進砂),堆積相 TM (潮汐の影響し た浅海成堆積物),堆積相 ES (湾口砂州堆積物),堆 積相 SP (砂嘴堆積物),堆積相 SM (砂嘴縁辺堆積物), 堆積相 SS (サンドショール堆積物),堆積相 PD – DF(プ ロデルタ~デルタフロント堆積物),堆積相 MT (現世 の干潟堆積物),堆積相 MF (現世の河川堆積物),堆 積相 AS (盛土) に整理することができる. (2) 堆積相 BR は網状河川システム, 堆積相 MR は蛇 行河川システム, 堆積相 TR, TF, SB, TS, TM の組み合 わせはエスチュアリーシステム, 堆積相 SP, SM, SS の 組み合わせは砂嘴システム, 堆積相 PD – DF, MT, MF, AS の組み合わせはデルタシステムを構成する. エス チュアリーシステムは上方深海化する内陸に後退する 堆積システムを構成するのに対し, デルタシステムは 上方浅海化する沖合に前進する堆積システムを構成す る. 砂嘴システムは下総台地の西縁において局所的な 堆積体を形成する.

(3) 中川開析谷と荒川開析谷を充填する沖積層は, 下位より低海水準期堆積体、海進期堆積体、高海水準 期堆積体に区分され,シーケンス境界は下総層群や埋 没段丘礫層と沖積層の境界の不整合面に認定すること ができる.海進面は網状河川・蛇行河川システム境界 に分布し、14.1 cal kyr BP より若い年代をしめす. 蛇 行河川・エスチュアリーシステム境界は初期氾濫面と して認定され, 9.3~11.5 cal kyr BP の年代をしめす. 最大海氾濫面はエスチュアリー・デルタシステム境界 に分布し, 6.4~8.0 cal kyr BP の年代値をしめす.低 海水準期堆積体は癒着する網状河川システム、海進期 堆積体はアグラデーショナルにリトログラデーション する蛇行河川システムとリトログラデーションするエ スチュアリーシステム, 高海水準期堆積体はプログラ デーションするデルタシステムから構成される.砂嘴 システムではその中部に最大海氾濫面が認定される.

(4)東京低地と中川低地における最終氷期最盛期以降の古地理は次のようにまとめられる.後氷期の海水 準上昇に伴って、中川開析谷と荒川開析谷の網状河川 は、蛇行河川、潮汐河川、干潟、潮汐の卓越した内湾 へと変化した.完新世中期以降の海水準高頂期、まず は荒川開析谷における潮汐の卓越した内湾が利根川の 供給土砂によって埋積され、5000年前の利根川の流路 変遷によって次に中川開析谷の潮汐の卓越した内湾が 埋積された.中川開析谷の潮汐の卓越した内湾は 3500 年前には埋積が終了し、以降、現在の江戸川河口部の ようなデルタが前進した.この 3500年前の沿岸環境 変化は、潮汐卓越型デルタから河川卓越型デルタへの 動態変化とみなせる.

謝辞:水野清秀氏には査読を通して有益なコメントを 頂きました.記して謝意を表します.

文献

- Allen, G.P. and Posamentier, H.W. (1993) Sequence stratigraphy and facies model of an incised valley fill: the Gironde estuary, France. J. Sediment. Petrol., 63, 378–391.
- Bhattacharya, J.P. and Walker, R.G. (1992) Deltas. *In* Walker, R.G. and James, N.P. eds., *Facies Models:*

response to sea level change. Geol. Assoc. Canada, 157–177.

- Boyd, R., Dalrymple, R. and Zaitlin, B.A. (1992) Classification of clastic coastal depositional environments. *Sediment. Geol.*, **80**, 139–150.
- Catuneanu, O. (2006) *Principles of Sequence Stratigraphy*. Elsevier, 375p.
- Dalrymple, R.W. (1992) Tidal Depositional Systems. In Walker, R.G. and James, N.P. eds., Facies Models: response to sea level change. Geol. Assoc. Canada, 195–218.
- 遠藤邦彦・関本勝久・高野 司・鈴木正章・平井幸弘 (1983) 関東平野の沖積層.アーバンクボタ, no. 21, 26-43.
- 遠藤邦彦・小杉正人・菱田 量 (1988) 関東平野の沖積 層とその基底地形.日本大学文理学部自然科学研 究所研究紀要, no.23, 37-48.
- 遠藤邦彦・小杉正人・松下まり子・宮地直道・菱田 量・ 高野 司 (1989) 千葉県古流山湾周辺域における完 新世の環境変遷史とその意義.第四紀研究, 28, 61-77.
- 遠藤邦彦・石綿しげ子・堀 伸三郎・中尾有利子 (2013) 東京低地と沖積層:軟弱地盤の形成と縄文海進. 地学雑, **122**, 968–991.
- Fairbanks, R.G. (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. *Nature*, **342**, 637–642.
- Hori, K., Saito, Y., Zhao, Q. and Wang, P. (2002) Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to late Pleistocene– Holocene sea-level changes. J. Sediment. Res., 72, 884–897.
- 井関弘太朗 (1975) 沖積層基底礫層について.地学雑, 84, 1-18.
- 石原与四郎・木村克己・田辺 晋・中島 礼・宮地良 典・堀 和明・稲崎富士・八戸昭一 (2004a) 埼玉 県草加市柿木地区で掘削された沖積層ボーリング コア (GS-SK-1)の堆積相・堆積物特性と放射性炭 素年代.地調研報, 55, 183-200.
- 石原与四郎・木村克己・中島 礼・宮地良典・田辺 晋・ 中山俊雄・斎藤文紀 (2004b) 東京低地と荒川低地 から得られた3本のボーリングコアの堆積相と放 射性炭素年代:DK コア(江東区新砂),TN コア(足 立区舎人公園),HA コア(東綾瀬公園).地調研報, 55, 221-235.
- 石原与四郎・宮崎友紀・江藤稚佳子・福岡詩織・木村 克己(2013)東京港湾地域のボーリング情報を用 いた浅層3次元地質・地盤モデル.地質雑,119, 554-566.
- 貝塚爽平 (1979) 東京の自然史(増補第二版). 紀伊国

屋書店, 239p.

- 木村克己・石原与四郎・宮地良典・中島 礼・中西利典・ 中山俊雄・八戸昭一(2006)東京低地から中川低 地に分布する沖積層のシーケンス層序と層序の再 検討.地質学論集, no. 59, 35-52.
- 木村克己・花島裕樹・石原与四郎・西山昭一(2013) 埋没地形面の形成過程を考慮したボーリングデー タ補間による沖積層基底面モデルの三次元解析: 東京低地北部から中川低地南部の沖積層の例.地 質雑,119,537-553.
- 小杉正人(1989) 完新世における東京湾の海岸線の移 動. 地理評, **62**, 359–374.
- 久保純子(1994)東京低地の水域・地形の変遷と人間 活動.大矢雅彦(編),防災と環境保全のための 応用地理学,古今書院,141-158.
- Kubo, S. (2012) Shifting of the Arakawa River in the Kanto Plain, central Japan, during the late Holocene: a geomorphological approach. *Geog. Rev. Japan ser. B.*, 84, 71–80.
- Lambeck, K. and Chappell, J., 2001, Sea level change through the last glacial cycle. *Science*, **292**, 679-686.
- 増田富士雄・伊勢屋ふじこ (1985) "逆グレーディン グ構造":自然堤防帯における氾濫原洪水堆積 物の示相堆積構造.堆積学研究会報, no. 22/23, 108-116.
- Matsuda, I. (1974) Distribution of the Recent Deposits and Buried Landforms in the Kanto Lowland, Central Japan. *Geogr. Rep. Tokyo Metropolitan Univ.*, no. 9, 1–36.
- 松田磐余 (1993) 東京湾と周辺の沖積層. 貝塚爽平(編), 東京湾の地形・地質と水,築地書館, 67-109.
- Miall, A.D. (1992) Alluvial Deposits. *In* Walker, R.G. and James, N.P. eds., *Facies Models: response to sea level change*. Geol. Assoc. Canada, 119–142.
- 宮地良典・木村克己・石原与四郎・田辺 晋・中島 礼・ 堀 和明・中山俊雄・斎藤文紀, (2004) 東京都江 戸川区小松川地区で掘削された沖積層ボーリング コア (GS-KM-1) の堆積相とその堆積物物性・放 射性炭素年代.地調研報, 55, 201–220.
- 中西利典・田辺 晋・木村克己・中島 礼・内山美恵子・ 柴田康行(2011a)埼玉県三郷市彦成地区の沖積 層コア(GS-MHI-1)の堆積相・珪藻化石群集組成・ 物性・放射性炭素年代値.地調研報, 62, 3-46.
- 中西利典・田辺 晋・木村克己・中島 礼・内山美恵 子・柴田康行(2011b)埼玉県春日部市備後東地 区に分布する沖積層の堆積相,珪藻化石群集,物 性,放射性炭素年代値.地調研報, **62**, 47-84.
- 中島 礼・田辺 晋・宮地良典・石原与四郎・木村克 己 (2006) 沖積層ボーリングコアにみられる貝化石 群集変遷一埼玉県草加市柿木と東京都江戸川区小 松川の例-.井内美郎・稲崎富士・卜部厚志・岡

孝雄・木村克己・斎藤文紀・高安克己・立石雅昭・ 中山俊雄・長谷義隆・三田村宗樹(編),沖積層 研究の新展開,地質学論集, no. 59, 19–33.

- 奈良正和 (1994) "ヒメスナホリムシの生痕化石"の形 成者は何か?-生痕化石 Macaronichnus segregatis の形成メカニズム. 化石, no. 56, 9-20.
- 奥谷喬司 (2000) 日本近海産貝類図鑑. 東海大学出版会, 1173p.
- Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsay, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turnery, C.S.M., van der Plicht, J. and Weyhenmeyer, C.E. (2009) Intcal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. *Radiocarbon*, **51**, 1111–1150.
- Reineck, H.E. and Singh, I.B. (1980) *Depositional* Sedimentary Environments. Springer-Verlag, 551p.
- Stuiver, M. and Braziunas, T.F. (1993) Modeling atmospheric ¹⁴C influences and ¹⁴C ages of marine samples back to 10,000 BC. *Radiocarbon*, **35**, 137– 189.
- Stuiver, M., Reimer, P.J. and Reimer, R.W. (2011) CALIB 6.0. http://intcal.qub.ac.uk/calib/. 2011 年 1 月 20 日 引用.
- 田辺 晋(2011)野田地域の地質,第6章沖積層.地 域地質研究報告(5万分の1地質図幅),産総研 地質調査総合センター,44-54.
- 田辺 晋(2013)東京低地と中川低地における最終氷 期最盛期以降の古地理.地学雑, 122, 949-967.
- 田辺 晋・石原与四郎(2013)東京低地と中川低地に おける沖積層最上部陸成層の発達様式:"弥生の 小海退"への応答.地質雑,119,350–367.
- Tanabe, S., Saito, Y., Vu, Q.L., Hanebuth, T.J.J., Ngo, Q.L. and Kitamura, A. (2006) Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam. Sediment. Geol., 187, 29–61.
- 田辺 晋・石原園子・中島 礼・宮地良典・木村克己 (2006a)東京低地中央部における沖積層の中間砂 層の形成機構.地質学論集, no. 59, 35-52.
- 田辺 晋・中島 礼・中西利典・石原与四郎・宮地良 典・木村克己・中山俊雄・柴田康行(2006b)東 京都葛飾区における沖積層の堆積相と堆積物物 性:奥東京湾口の砂嘴の時空間分布.地調研報, 57,261-288.
- 田辺 晋・中島 礼・中西利典・木村克己・柴田康 行(2006c)東京都足立区本木地区から採取した 沖積層ボーリングコア堆積物(GS-AMG-1)の 堆積相と放射性炭素年代,物性.地調研報,57,

289-307.

- 田辺 晋・中西利典・木村克己・八戸昭一・中山俊雄 (2008a)東京低地北部から中川低地にかけた沖積 層の基盤地形.地調研報, 59, 497-508.
- 田辺 晋・石原与四郎・中島 礼・木村克己・中山 俊雄(2008b)東京低地東縁における2本のボー リングコア堆積物の堆積相と放射性炭素年代値: MZコア(葛飾区水元公園), SZコア(江戸川区 篠崎公園).地調研報,59,135-149.
- 田辺 晋・石原与四郎・中島 礼(2008c)東京低地 北部における沖積層のシーケンス層序と古地理. 地調研報, **59**, 509–547.
- 田辺 晋・中西利典・中島 礼・石原与四郎・内田 昌男・柴田康行(2010a)埼玉県の中川開析谷に おける泥質な沖積層の埋積様式.地質雑,116, 252-269.
- 田辺 晋・中島 礼・吉岡秀佳・竹内美緒・柴田康行 (2010b)東京都足立区平野地区から採取した沖積 層コア(GS-AHH-1)の堆積相と放射性炭素年代. 地質調査研報, 61, 453-463.
- 田辺 晋・石原与四郎・中西利典(2010c)東京低地 から中川低地にかけた沖積層の層序と物性:沖積 層の2部層区分について.地質雑,116,85-98.
- 田辺 晋・中島 礼・内田昌男・柴田康行 (2012) 東 京低地臨海部の沖積層にみられる湾口砂州の形成 機構.地質雑, 118, 1–19.
- van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F., Louit, T.S. and Hardenbol, J. (1988) An overview of the fundamentals of sequence stratigraphy and key definitions. *In*: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A. and Van Wagoner, J.C., eds., Sea-Level Changes: An Integrated Approach. *SEPM Spec. Publ.*, no. 42, 39–45.
- Yoneda, M., Shibata, Y., Tanaka, A., Uehiro, T., Morita, M., Uchida, M., Kobayashi, T., Kobayashi, C., Suzuki, R., Miyamoto, K., Hancock, B., Dibden, C. and Edmonds, J.S. (2004) AMS ¹⁴C measurements and preparative techniques at NIES-TERRA. *Nucl. Instr. and Meth. B*, 223–224, 116–123.
- Zaitlin, B.A., Dalrymple, R.W. and Boyd, R. (1994) The stratigraphic organization of incised-valley systems: origin and sedimentary sequences. *In*: Dalrymple, R.W., Boyd, R., Zaitlin, B.A., eds., Incised-valley Systems: Origin and Sedimentary Sequences. *SEPM Spec. Publ.* no. 51, 45–60.

(受付:2012年10月5日 受理:2013年9月18日)

第1図 東京低地と中川低地,ボーリングコアの掘削地点の位置図. (a) 関東平野. (b) 沖積層の基盤地形(田辺ほか,2008a). 国土地理院発行の数値地図 50 m メッシュ(標高)「日本 II」と数値地図 25000(地図画像)「東京」 を使用した.

Fig. 1 Location of the Tokyo and Nakagawa Lowlands and the core sites. (a) Kanto Plain. (b) Basal topography of the Alluvium (Tanabe *et al.*, 2008a). Digital Map 50 m Grid (Elevation), Japan II and Digital Map 25000 (Map Image), Tokyo from the Geospatial Information Authority of Japan were used to illustrate this map.

GS-KBH-1 Elevation: +5.36 m

Fig. 2 Sedimentary column of the sediments cores.

GS-KS-1

GS-MUS-1 Elevation: +2.42 m

第2図 (つづき). Fig. 2 Continued.

GS-MHI-1 Elevation: +3.41 m

第2図 (つづき). Fig. 2 Continued.

GS-SMB-1 Elevation: +3.08 m

TN Elevation: +2.88 m

第2図 (つづき). Fig. 2 Continued.

ΜZ

Elevation: +1.90 m

GS-AHH-1 Elevation: +2.54 m

第2図 (つづき). Fig. 2 Continued.

HA Elevation: -0.03 m

GS-KNJ-1 Elevation: +0.43 m

GS-AMG-1

Elevation: +1.67 m

GS-KTS-1 Elevation: +1.19 m

第2図 (つづき). Fig. 2 Continued.

SZ

GS-KM-1 Elevation: -1.99 m

第2図 (つづき). Fig. 2 Continued.

GS-ISH-1 Elevation: +2.69 m

第2図 (つづき). Fig. 2 Continued.

Elevation: +7.98 m Sedimentary facies Mud content (%) 13 AS 5 15 0.6 DF 1.4 _____20 to PD 1.7 4.7 25 6.4 6.6 6.9 7.9 ______30 · 8.4 ES 8.5 35 -9.3 9.5 9.7 ______ S ТΜ 10.1 -10.2 -45 10.6 TR 50 10.9 55 11.5 11.6 ₩ IG MR 12.2 13.0 - 65 -* 13.3 -70 · BR 73 100 60 40 20 0 80 -Very Clay fine sand 第2図 (つづき).

GS-KSM-1

Fig. 2 Continued.

Depositional system

Estuary system

Spit system

----- Isochron

Delta system

Braided river system

Shimosa Group

Meandering river system

^{13.9}— Depositional age (cal kyr BP)

(Middle to late Pleistocene deposits)

Sedimentary facies

- MF: Modern fluvial sediments
- MT: Modern tidal flat sediments
- DF: Deltafront sediments
- PD: Prodelta sediments
- SS: Sand shoal sediments
- SM: Spit margin sediments
- SP: Spit sediments
- ES: Estuary mouth shoal sediments
- TM: Tide-influenced shallow marine sediments
- TS: Transgressive sand
- TF: Tidal flat sediments
- TR: Tidal river sediments
- MR: Meandering river sediments
- BR: Braided river sediments

第4図中川開析谷と荒川開析谷における同時間地質断面.

Fig. 4 Chronostratigraphic sections in the Nakagawa and Arakawa Valleys.

Sequence stratigraphy

MxFS: Maximum flooding surface TES: Tidal-current erosional surface IFS: Initial flooding surface TRS: Tidal ravinement surface TS: Transgressive surface SB: Sequence boundary HST: Highstand systems tract TST: Transgressive systems tract LST: Lowstand systems tract

第5図東京低地と中川低地におけるN値・岩相断面図. 位置は第1図に示す.

Fig. 5 Cross sections of the *N*-value and lithology in the Tokyo and Nakagawa Lowlands. The Locations are shown in Figure 1.

第5図 (つづき). Fig. 5 Continued.

N-value 0 10 20 30 40~ Lithology Sand Mud Gravel Muddy sand/sandy mud MxFS: maximum flooding surface IFS: initial flooding surface TS: transgressive surface SB: sequence boundary ——— Isochron

2 km

第5図 (つづき). Fig.5 Continued.

第6図. 東京低地と中川低地における最終氷期最盛期以降の古地理. Fig. 6 Paleogeography in the Tokyo and Nakagawa Lowlands since the Last Glacial Maximum.

Core	Latitude (N)	Longitude (E)	Elevation (m)	Penetration depth (m)	Reference
GS-KBH-1	35°57′05.7″	139°46′25.6″	+5.36	49.90	Nakanishi et al. (2011b)
GS-KS-1	35°55′55.8″	139°48′20.1″	+5.34	57.00	Tanabe (2011)
GS-MUS-1	35°51′51.3″	139°51′49.8″	+2.42	42.00	Tanabe et al. (2010a)
GS-MHI-1	35°51′42.6″	139°51′05.6″	+3.41	55.00	Nakanishi et al. (2011a)
GS-SK-1	35°51′32.7″	139°50′06.9″	+3.73	60.00	Ishihara et al. (2004a)
GS-SMB-1	35°50′45.6″	139°47′16.8″	+3.08	41.00	Tanabe (2011)
TN	35°47′54.0″	139°46′17.4″	+2.88	40.00	Ishihara et al. (2004b)
MZ	35°47′47.3″	139°52′24.3″	+1.90	60.00	Tanabe et al. (2008b)
GS-AHH-1	35°47′04.0″	139°48′16.6″	+2.54	31.50	Tanabe et al. (2010b)
HA	35°46′17.3″	139°49′48.7″	-0.03	70.00	Ishihara et al. (2004b)
GS-KNJ-1	35°45′49.3″	139°51′38.8″	+0.43	70.00	Tanabe et al. (2006b)
GS-AMG-1	35°45′43.2″	139°47′11.0″	+1.67	58.00	Tanabe et al. (2006c)
GS-KTS-1	35°44′47.8″	139°52′23.2″	+1.19	42.00	Tanabe et al. (2006b)
SZ	35°42′17.2″	139°53′50.1″	+0.61	13.00	Tanabe et al. (2008b)
GS-KM-1	35°41′45.1″	139°50′57.4″	-1.99	67.23	Miyachi et al. (2004)
DK	35°39′59.1″	139°49′30.8″	+0.08	75.00	Ishihara et al. (2004b)
GS-ISH-1	35°39′54.2″	139°54′52.8″	+2.69	60.00	Tanabe et al. (2012)
GS-KSM-1	35°39′18.6″	139°48′29.9″	+7.98	85.00	Tanabe et al. (2012)

第1表 ボーリングコア堆積物の位置情報と掘削長. Table 1 Location and penetration depth of the sediment cores.

4	Ē			~ ild~	~ 14~		
(m)	Elevation (m)	Material	Species	Conventioanl * 'C age (RP)	Calibrated ^{TC} age (26 ranoe) (cal BP)	Lab#	Kerence
GS-KBH-1							
2.63	2.73	Plant fragments		780 ± 40	670 - 770	NIES-TERAA-b081205a31	Nakanishi et al. (2011b)
2.63	2.73	Plant fragments		910 ± 60	720 - 930	NIES-TERAA-b011306a10	Nakanishi et al. (2011b)
2.76	2.6	Plant fragments		550 ± 30	520 - 560	NIES-TERAA-b081205a32	Nakanishi et al. (2011b)
3.7	1.66	Plant fragments		810 ± 40	670 - 790	NIES-TERAA-b081205a32	Nakanishi et al. (2011b)
4.52	0.84	Plant fragments		1080 ± 40	930 - 1060	NIES-TERAA-b081205a33	Nakanishi et al. (2011b)
5.5	-0.14	Plant fragments		1010 ± 40	890 - 980	NIES-TERAA-b081205a35	Nakanishi et al. (2011b)
6.24	-0.88	Plant fragments		1260 ± 50	1070 - 1290	NIES-TERAA-b081205a36	Nakanishi et al. (2011b)
6.24	-0.88	Plant fragments		1370 ± 40	1240 - 1350	NIES-TERAA-b011306a13	Nakanishi et al. (2011b)
6.93	-1.57	Plant fragments		3130 ± 70	3160 - 3480	NIES-TERAA-b081205a37	Nakanishi et al. (2011b)
6.93	-1.57	Plant fragments		3160 ± 50	3260 - 3480	NIES-TERAA-b011306a14	Nakanishi et al. (2011b)
7.21	-1.85	Plant fragments		2910 ± 50	2920 - 3210	NIES-TERAA-b081205a33	Nakanishi et al. (2011b)
7.21	-1.85	Plant fragments		3190 ± 40	3340 - 3480	NIES-TERAA-b011306a15	Nakanishi et al. (2011b)
8.11	-2.75	Plant fragments		3230 ± 40	3380 - 3560	NIES-TERAA-b081205a38	Nakanishi et al. (2011b)
8.11	-2.75	Plant fragments		3440 ± 40	3610 - 3830	NIES-TERAA-b011306a16	Nakanishi et al. (2011b)
8.76	-3.4	Plant fragments		3230 ± 100	3240 - 3690	NIES-TERAA-b082605a03	Nakanishi et al. (2011b)
9.23	-3.87	Shell	Potamocorbula sp.	4000 ± 40	3880 - 4140	NIES-TERAA-b080505a16	Nakanishi et al. (2011b)
9.45	-4.09	Plant fragments		3800 ± 40	4080 - 4300	NIES-TERAA-b011306a17	Nakanishi et al. (2011b)
9.88	-4.52	Shell	Potamocorbula sp.	4230 ± 50	4170 - 4480	NIES-TERAA-b080505a19	Nakanishi et al. (2011b)
10.51	-5.15	Shell	Potamocorbula sp.	4250 ± 70	4140 - 4540	NIES-TERAA-b080505a20	Nakanishi et al. (2011b)
11.25	-5.89	Shell	Potamocorbula sp.	4330 ± 40	4350 - 4590	NIES-TERAA-b082605a04	Nakanishi et al. (2011b)
11.65	-6.29	Plant fragments		6480 ± 50	7290 - 7480	NIES-TERAA-b011306a18	Nakanishi et al. (2011b)
12.66	-7.3	Shell	Potamocorbula sp.	4700 ± 50	4810 - 5080	NIES-TERAA-b080505a21	Nakanishi et al. (2011b)
12.8	-7.44	Plant fragments		4290 ± 40	4820 - 4970	NIES-TERAA-b011306a19	Nakanishi et al. (2011b)
13.05	-7.69	Shell	Potamocorbula sp.	4770 ± 40	4880 - 5210	NIES-TERAA-b080505a22	Nakanishi et al. (2011b)
15.37	-10.01	Shell	Raetellops pulchellus (Adams et Reeve)	5120 ± 40	5380 - 5580	NIES-TERAA-b080505a24	Nakanishi et al. (2011b)
15.37	-10.01	Shell	Potamocorbula sp.	5060 ± 40	5300 - 5530	NIES-TERAA-b080505a25	Nakanishi et al. (2011b)
16.17	-10.81	Shell	Ringiculina doliaris (Gould)	5240 ± 50	5480 - 5710	NIES-TERAA-b080505a26	Nakanishi et al. (2011b)
16.52	-11.16	Plant fragments		5030 ± 50	5660 - 5900	NIES-TERAA-b011306a20	Nakanishi et al. (2011b)
16.63	-11.27	Plant fragments		5270 ± 50	5930 - 6180	NIES-TERAA-b082605a06	Nakanishi et al. (2011b)
18.66	-13.3	Shell	Ringiculina doliaris (Gould)	5600 ± 40	5890 - 6120	NIES-TERAA-b080505a27	Nakanishi et al. (2011b)
19.47	-14.11	Plant fragments		5920 ± 30	6670 - 6800	NIES-TERAA-b081205a16	Nakanishi et al. (2011b)
19.44	-14.08	Shell	Raetellops pulchellus (Adams et Reeve)	5890 ± 40	6220 - 6400	NIES-TERAA-b080505a29	Nakanishi et al. (2011b)
19.44	-14.08	Shell	Potamocorbula sp.	5680 ± 50	5940 - 6210	NIES-TERAA-b080505a30	Nakanishi et al. (2011b)
19.44	-14.08	Plant fragments		5080 ± 40	5740 - 5910	NIES-TERAA-b081205a38	Nakanishi et al. (2011b)
20.33	-14.97	Shell	Potamocorbula sp.	6490 ± 50	6860 - 7140	NIES-TERAA-b080505a31	Nakanishi et al. (2011b)
21.2	-15.84	Shell	Ringiculina doliaris (Gould)	6800 ± 40	7250 - 7410	NIES-TERAA-b082605a04	Nakanishi et al. (2011b)
21.2	-15.84	Shell	Potamocorbula sp.	6800 ± 40	7250 - 7410	NIES-TERAA-b080505a32	Nakanishi et al. (2011b)
21.2	-15.84	Plant fragments		5600 ± 50	6300 - 6480	NIES-TERAA-b081205a19	Nakanishi et al. (2011b)
22.39	-17.03	Shell	Theora fragilis (Adams)	7000 ± 40	7420 - 7570	NIES-TERAA-b080505a33	Nakanishi et al. (2011b)
22.39	-17.03	Plant fragments		6130 ± 40	6930 - 7160	NIES-TERAA-b081205a20	Nakanishi et al. (2011b)
23.45	-18.09	Plant fragments		6540 ± 50	7410 - 7520	NIES-TERAA-b081205a39	Nakanishi et al. (2011b)
23.75	-18.39	Shell	Ringiculina doliaris (Gould)	7560 ± 50	7930 - 8140	NIES-TERAA-b080505a35	Nakanishi et al. (2011b)
23.75	-18.39	Plant fragments		6460 ± 50	7270 - 7440	NIES-TERAA-b081205a22	Nakanishi et al. (2011b)
25.55	-20.19	Plant fragments		8070 ± 50	8770 - 9130	NIES-TERAA-b011306a23	Nakanishi et al. (2011b)
25.8	-20.44	Shell	Potumocorbula sp.	8070 ± 50	8400 - 8660	NIES-TERAA-b080505a36	Nakanishi et al. (2011b)
26.68	-21.32	Plant fragments		7110 ± 50	7840 - 8020	NIES-TERAA-b081205a24	Nakanishi et al. (2011b)
27.32	-21.96	Shell	Potamocorbula sp.	8410 ± 60	8840 - 9230	NIES-TERAA-b080505a38	Nakanishi et al. (2011b)

(つづみ).	(Continued).
第2表	Table 2

Nakanishi et al. (2011b) Nakanishi et al. (2011b) Tanabe (2010) Tanabe (2010) T	Tanabe et al. (2010a) Tanabe et al. (2010a) Tanabe et al. (2010a) Tanabe et al. (2010a)
NIES-TERA-b081205a3 NIES-TERA-b081205a3 NIES-TERA-b081205a3 NIES-TERA-b081205a3 NIES-TERA-b081205a35 NIES-TERA-b081205a35 NIES-TERA-b081205a37 NIES-TERA-b081205a37 NIES-TERA-b081205a37 NIES-TERA-b081205a9 NIES-TERA-b081205a10 NIES-TERA-b081205a10 NIES-TERA-b081205a10 NIES-TERA-b081205a10 NIES-TERA-b081205a10 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b081205a13 NIES-TERA-b011306a25 NIES-TERA-b0120304a17 NIES-TERA-b12204a21 NIES-TERRA-b12204a21 NIES-TERRA-b12204a21 NIES-TERRA-b12204a23 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA-b1220423 NIES-TERRA	terra-012109a03 terra-012109a04 terra-012109a05 terra-011909a03
8990-9320 8550-8780 8550-8780 8540-8800 8540-8800 9030-9410 7980-8170 9930-9410 9730-9540 9730-10180 9730-10180 9730-10180 9730-10180 9730-9700 9730-9700 9730-9700 9730-9700 9730-9700 9730-9700 9730-9700 9730-9700 9730-9700 9730-10180 9730-10180 9730-9700 9730-9700 9730-9700 9730-9700 9730-9700 9730-9140 10780-10790 9730-10790 9730-10790 9730-10180 10780-11040 9730-10180 10780-11040 9730-10180 9730-10790	2360-2730 2760-2850 3550-3650 3470-3660
$\begin{array}{c} 8520 \pm 60 \\ 7860 \pm 50 \\ 7730 \pm 50 \\ 7730 \pm 50 \\ 7880 \pm 50 \\ 7880 \pm 50 \\ 7880 \pm 50 \\ 8220 \pm 50 \\ 8220 \pm 50 \\ 8200 \pm 40 \\ 8400 \pm 60 \\ 8300 \pm 50 \\ 8300 \pm 50 \\ 8300 \pm 50 \\ 9180 \pm 50 \\ 8330 \pm 50 \\ 9180 \pm 50 \\ 9130 \pm 60 \\ 9130 \pm 50 \\ 9130 \pm 70 \\ 9260 \pm 60 \\ 8820 \pm 70 \\$	2470 ± 80 2700 ± 30 3360 ± 30 3660 ± 30
p. (Yokoyama) (Yokoyama) a sp. (Yokoyama) a sp. a sp. a sp.	a sp.
Crassostrea : Cadella delta Potamocorbu Ratellops pu Ratellops pu Veremolpa m Veremolpa m	Potamocorbu
Shell Plant fragments Plant fragments Shell Shell Plant fragments Shell Plant fragments Shell Plant fragments Shell Plant fragments Shell Plant fragments Shell Plant fragments Shell Plant fragments Shell Plant fragments Shell Plant fragments Shell Plant fragments Plant fragments	Plant fragments Plant fragments Plant fragments Shell
21.96 21.96 22.25 24.19 24.19 25.419 25.419 25.419 25.419 25.419 25.42 25.54 25.5555555555	0.82 -0.93 -4.43
27.32 27.32 27.61 28.65 29.55 29.55 29.55 29.55 29.55 29.55 29.55 33.59 33.59 33.55 33.55 33.55 33.55 33.55 33.55 33.55 33.55 33.55 33.55 1.15 1.1	3-MU3-1 1.6 3.35 5.45 6.85

Tanabe et al. (2010a) Tanabe et al. (2010a)	Tanabe et al. (2010a) Tanabe et al. (2010a) Tanabe et al. (2010a)	Tanabe et al. (2010a) Tanabe et al. (2010a) Tanabe et al. (2010a) T1	1 anabe et al. (2010a) Tanabe et al. (2010a) Tanabe et al. (2010a)	Tanabe et al. (2010a) Tanabe et al. (2010a) Tanabe et al. (2010a)	Tanabe et al. (2010a) Tanabe et al. (2010a)	Tanabe et al. (2010a) Tanabe et al. (2010a)	Nakanishi et al. (2011a) Nakanishi et al. (2011a)	Nakanishi et al. (2011a)	Nakanishi et al. (2011a) Nakanishi et al. (2011a)	Nakanishi et al. (2011a) Nakanishi et al. (2011a)	Nakanishi et al. (2011a)	Nakanishi et al. (2011a) Nakanishi et al. (2011a)	Nakanishi et al. (2011a) Nakanishi et al. (2011a)	Nakanishi et al. (2011a)	Nakanishi et al. (2011a) Nakanishi et al. (2011a)	Nakanishi et al. (2011a)	Nakanishi et al. (2011a)	Nakanishi et al. (2011a)										
terra-012109a06 terra-011909a04 Beta-226998 Beta-226999 terra-012109a08	Beta-227000 terra-011909a05 terra-012109a09	terra-011909a06 terra-012609a03 terra-011909a08	Beta-22/001 terra-011909a09 Beta-227002	terra-011909a10 terra-011909a11 terra-011909a12	terra-011909a15 terra-011909a16	terra-012109a10 terra-012109a11	NIES-TERRA-b083104a03 NIES-TERRA-b172004a20	NIES-TERRA-b083104a04	NIES-TERRA-b083104a05 NIES_TERRA-b000404a03	NIES-TERRA-b083104a06	NIES-TERRA-b083104a07	NIES-TERRA-b083104a09	NIES-TERRA-b083104a10	NIES-TERRA-b082604a03	NIES-TERRA-b083104a12	NIES-TERRA-b083104a13 NIES-TERRA-b082604a04	NIES-TERRA-b082604a35	NIES-TERRA-b082604a05	NIES-TERRA-b082604a07	NIES-1EKKA-b085104a1/ NIES-TERRA-b082604a08	NIES-TERRA-b083104a18	NIES-TERRA-b082604a27	NIES-TERRA-b082604a09	NIES-TERRA-b082604a10 MIES TERRA F082604a12	NIES-IEKKA-D082004a15 NIFS-TFRR A-b082604a14	NIES-TERRA-b083104a19	NIES-TERRA-b082604a28	NIES-TERRA-b082604a29
$\begin{array}{c} 3440-3580\\ 3480-3680\\ 3550-3800\\ 3550-3800\\ 3530-3790\\ 4870-5050\end{array}$	3720 - 3980 3960 - 4230 4280 - 4440	7020 - 7320 4860 - 5270 5560 - 5690 5000 - 5320	0.000 - 0.0000 0.000 - 0.0000 0.000 - 0.0000	7830 - 8010 8000 - 8160 8200 - 8390	8330-8570 8570-8970		2490 - 2640 2350 - 7620	4420 - 4630	4290 - 4830	3960 - 4450	3890 - 4260	4520 - 4730	4250 - 4520	4420 - 4030 4760 - 5000	4570 - 4840	4520 - 4840 4540 - 4820	4570 - 4850	4590 - 4880	4680 - 4970	45/0 - 49/0 4620 - 4930	4570 - 4890	4670 - 5020	4810 - 5080	5000 - 5300	5170-5450	5600 - 5800	5390 - 5620	5320 - 5650
$3280 \pm 30 \\ 3680 \pm 30 \\ 3730 \pm 40 \\ 3720 \pm 40 \\ 4410 \pm 30 \\$	3890 ± 40 4060 ± 40 3930 ± 30	6660 ± 60 4790 ± 70 5250 ± 30 5710 + 40	$5/10 \pm 40$ 6870 ± 180 7390 ± 40	7460 ± 40 7620 ± 30 7840 + 40	7980 ± 60 8230 ± 70	32840 ± 130 29690 ± 120	2550 ± 40 2440 ± 50	4050 ± 40	4040 ± 90 3870 ± 60	4150 ± 90	4050 ± 60	4100 ± 40	3950 ± 50	4030 ± 50	4170 ± 60	4140 ± 70 4500 + 50	4190 ± 60	4560 ± 50	4610 ± 50	4240 ± 70 4580 ± 50	4230 ± 70	4620 ± 60	4700 ± 50	4860 ± 50	0040 ± 50	4980 ± 70	5150 ± 50	5160 ± 70
Potamocorbula sp.	Potamocorbula sp.	Ringcatina doltaris (Gould) Ringcatina doltaris (Gould) Ringcatina doltaris (Gould)	Ringiculina doliaris (Gould)	Crassostrea sp. Crassostrea sp.	Crassostrea ep. Crassostrea sp. Crassostrea sp.											Potamocorbula su		Potamocorbula sp.	Potamocorbula sp.	Potamocorbula sp.	_			Kingiculina doltaris (Gould)	Macoma ci. lokyoensis Makiyama Ringizuling doligris (Gould)	Nugurana waan is (Ooma)		Ringiculina doliaris (Gould)
Plant fragments Shell Shell fragments Shell fragments Plant fragments	Shell fragments Shell Plant fragments	Shell Shell Shell	Shell fragments Shell fragments	Shell Wormsnail Shell	Shell Shell	Plant fragments Plant fragments	Plant fragments Plant fragments	Plant fragments	Plant fragments Shell fragments	Shell fragments	Shell fragments	Plant fragments	Plant fragments	Shell fragments	Plant fragments	Plant fragments Shell	Plant fragments	Shell	Shell	Plant tragments Shell	Plant fragments	Shell fragments	Shell fragments	Shell	Shell	Plant fragments	Shell fragments	Shell
-4.43 -5.73 -12.23 -14.28 -14.93	-17.28 -18.13 -18.18	-18.87 -19.65 -20.96	-21.65 -23.08 -23.68	-24.18 -25.13 -26.28	-27.98 -28.63	-31.8 -36.88	-0.36	-5.13	-6.16 -7 13	7.97	-9.13	-11.49	-13.51	-14.37	-15.19	-16.16 -16.16	-16.91	-16.91	-18.11	-19.79	-19.83	-19.83	-20.79	-22.09	-25.92	-23.88	-24.01	-24.81
6.85 8.15 14.65 16.7 17.35	19.7 20.55 20.6	21.29 22.07 23.38	25.5 26.1	26.6 27.55 28.7	30.4 31.05	34.22 39.3 55 MHT 1	3.77	8.54	9.57 10.54	11.38	12.54	14.9	16.92	17.78	18.6	19.57 19.57	20.32	20.32	21.52	23.2	23.24	23.24	24.2	C C2 2 2 2	20.33 26.47	27.29	27.42	28.22

Nakamishi et al. (2011a) Nakamishi et al. (2011a)	Nakanishi et al. (2011a) Nakanishi et al. (2011a)	Nakamishi et al. (2011a) Nakamishi et al. (2011a)	Nakanishi et al. (2011a) Nakanishi et al. (2011a) Nakanishi et al. (2011a) Nakanishi et al. (2011a)	Ishihara et al. (2004a) Tanabe et al. (2010a) Tanabe et al. (2010) Tanabe et al. (2010a) Ishihara et al. (2004a) Tranabe et al. (2004a)	Ishihara et al. ($2004a$) Ishihara et al. ($2004a$) Tanabe et al. ($2004a$) Ishihara et al. ($2004a$) Ishihara et al. ($2004a$) Ishihara et al. ($2010a$) Ishihara et al. ($2010a$) Ishihara et al. ($2010a$) Tanabe et al. ($2010a$) Tanabe et al. ($2010a$) Tanabe et al. ($2010a$)	Ishihara et al. (2004a) Ishihara et al. (2004a) Ishihara et al. (2004a) Tanabe et al. (2010a) Ishihara et al. (2010a) Ishihara et al. (2010a) Ishihara et al. (2004a) Tanabe et al. (2004a) Ishihara et al. (2004a)
NIES-TERRA-b082604a30 NIES-TERRA-b082604a15 NIES-TERRA-b082604a18 NIES-TERRA-b082604a19 NIES-TERRA-b082604a31 NIES-TERRA-b082604a34 NIES-TERRA-b082604a34 NIES-TERRA-b082604a34	NIES-TERRA-b082604a22 NIES-TERRA-b083104a20 NIES-TERRA-b083104a17 NIES-TERRA-b083104a23 NIES-TERRA-b083104a23 NIES-TERRA-b083104a23 NIES-TERRA-b083104a23	NIES-TERRA-b683104a25 NIES-TERRA-b683104a26 NIES-TERRA-b683104a26 NIES-TERRA-b690404a05 NIES-TERRA-b683104a31 NIES-TERRA-b683104a30 NIES-TERRA-b690404a06 NIES-TERRA-b683104a306 NIES-TERRA-b683104a306	NIES-TERRA-b083104a35 NIES-TERRA-b083104a35 NIES-TERRA-b083104a36 NIES-TERRA-b083104a37	Beta-177911 NIES-TERRA-b052406a18 NIES-TERRA-b050806a13 NIES-TERRA-b052406a21 Beta-177912 NIES-TERRA-b052406a22 NIES-TERRA-b052406a22 Rato, 183265	Beta-177913 Beta-177913 NIES-TERRA-b052406a23 Beta-177914 Beta-177914 Beta-177914 Beta-183666 NIES-TERRA-b05206a35 Beta-183667 Beta-183667 Beta-177915 NIES-TERRA-b052406a26 Beta-183668 NIES-TERRA-b052406a27 NIES-TERRA-b052406a27	Beta-177916 Beta-177917 Beta-177918 Beta-177919 Beta-177919 Beta-177921 Beta-177921 Beta-177921 Beta-177922 Beta-177922 Beta-177922 NIES-TFERRA-b652406a32 NIES-TFERRA-b052406a32
5410-5640 5380-5600 5310-5550 5570-5800 5570-5810 6420-6670 6850-7160	7010-7260 6850-7180 7480-7670 8350-8560 9430-9600 9690-10170	10230-10250 10230-10510 9890-10240 10500-10800 10500-11200 10940-11250 10490-10280 10570-10880	$\begin{array}{c} 11100 - 11330 \\ 12340 - 12770 \\ 12550 - 12790 \end{array}$	1060-1270 2350-2540 2310-2490 4410-4580 4770-4880 4800-4890 4570-4810	4570-4410 6990-7230 7840-8010 7780-7990 7780-8120 7970-8120 7970-8120 7970-8120 7970-8120 7970-19180 7980-8170 11070-11240	8670-8980 8990-9240 9400-9240 9400-9540 9260-9230 9770-10180 9800-10140 10370-10770
5160 ± 50 5140 ± 50 5070 ± 50 5300 ± 50 5310 ± 50 6120 ± 60 6500 ± 60	6630 ± 50 6140 ± 70 7100 ± 50 7990 ± 50 8530 ± 60 8830 ± 60	$\begin{array}{c} 9180 \pm 60\\ 9200 \pm 60\\ 8950 \pm 70\\ 9430 \pm 60\\ 9640 \pm 80\\ 9750 \pm 50\\ 9380 \pm 50\\ 9380 \pm 60\end{array}$	9800 ± 60 9800 ± 60 10580 ± 60	$1230 \pm 40 \\ 2420 \pm 40 \\ 2340 \pm 40 \\ 4020 \pm 40 \\ 4630 \pm 40 \\ 450 \pm 40 \\ 450 \pm 40 \\ 400 \\ $	4500 ± 40 6500 ± 40 6600 ± 40 6600 ± 40 7470 ± 40 7430 ± 50 7540 ± 40 7610 ± 40 7610 ± 40 7620 ± 40 7720 ± 50	$\begin{array}{c} 8280 \pm 40\\ 8480 \pm 40\\ 8490 \pm 40\\ 8490 \pm 40\\ 8450 \pm 50\\ 8520 \pm 40\\ 8730 \pm 40\\ 8770 \pm 50\\ 9170 \pm 40\\ 9370 \pm 70\end{array}$
Ringiculina doliaris (Gould) Macoma cf. tokyoensis Makiyama Ringiculina doliaris (Gould) Macoma cf. tokyoensis Makiyama Ringiculina doliaris (Gould) Ringiculina doliaris (Gould) Ringiculina doliaris (Gould)	Crassostrea sp.			Crassourea sp.	Dosinella angulosa (Philippi) Clementia vatheleti Mabille Cadella delta (Yokoyama) Veremolpa micra (Pilsbry) Crassostrea sp. Crassostrea sp.	Potamocorbula sp. Potamocorbula sp. Potamocorbula sp. Corbicula japonica Prime
Shell Shell Shell Shell Shell Shell	Shell fragments Plant fragments Shell fragments Shell Plant fragments Plant fragments	Plant fragments Plant fragments Plant fragments Plant fragments Plant fragments Plant fragments Plant fragments Plant fragments	Plant fragments Plant fragments Plant fragments	Plant fragments Plant fragments Plant fragments Shell Flant fragments Plant fragments Shell fragments	Shell tragments Shell Plant fragments Shell Shell Shell Shell fragments Shell fragments Plant fragments	Shell Shell Shell Shell Plant fragments Shell fragments Plant fragments Shell Plant fragments
-24.84 -24.92 -24.92 -25.8 -25.8 -25.8 -26.41 -27.54 -28.08	-30.37 -30.95 -30.94 -30.94 -32.26 -34.23		-44.19 -45.19 -46.47	0.48 -0.87 -1.52 -1.52 -3.07 -4.44 -444	-4.55 -6.49 -6.49 -11.37 -11.37 -11.37 -13.32 -13.47 -13.47 -13.67 -16.47	-16.82 -18.82 -20.07 -20.07 -20.68 -26.79 -28.97 -28.97 -36.97
28.25 28.33 28.33 29.21 30.95 31.49	33.78 34.35 34.35 34.35 34.35 37.64	38.97 39.87 40.4 44.08 44.17 45.77 46.16	47.6 48.6 49.88 K-1	3.25 5.25 6.8 8.2 8.2 8.2 8.2	8.28 10.22 110.22 115.1 115.1 17.05 117.2 117.4 117.4 20.2	20.55 22.55 23.8 23.8 23.8 23.4 30.52 30.52 32.7 40.7

43.15	-39.42	Plant fragments		9620 ± 40	10780 - 11040	Beta-177925	Ishihara et al. (2004a)
47.6	-43.87	Plant fragments		9720 ± 60	11070 - 11250	NIES-TERRA-b052406a33	Tanabe et al. (2010a)
58.72 GS-SMB-1	-54.99	Plant fragments		> 48350		Beta-180986	Ishihara et al. (2004a)
2.34	0.74	Plant fragments		1130 ± 40	960 - 1150	NIES-TERRA-b042407a22	Tanabe (2010)
4.47	-1.39	Plant fragments		4510 ± 50	5040 - 5310	NIES-TERRA-b042407a03	Tanabe (2010)
5.78	-2.7	Plant fragments		4820 ± 50	5470 - 5650	NIES-TERRA-b042407a04	Tanabe (2010)
5.95	-2.87	Shell	Rapana venosa (Valenciennes)	5200 ± 40	5460 - 5640	NIES-TERRA-b041207a18	Tanabe (2010)
7.55	-4.47	Shell	Crassostrea sp.	5940 ± 50	6260 - 6470	NIES-TERRA-b041207a20	Tanabe (2010)
8.87	-5.79	Shell	Potamocorbula sp.	6460 ± 40	6840 - 7110	NIES-TERRA-b052407a03	Tanabe (2010)
9.19	-6.11	Plant fragments		5010 ± 70	5640 - 5900	NIES-TERRA-b042407a05	Tanabe (2010)
10.2	-7.12	Shell	Potamocorbula sp.	6400 ± 50	6730 - 7010	NIES-TERRA-b041207a21	Tanabe (2010)
11.75	-8.67	Plant fragments		6350 ± 50	7170 - 7340	NIES-TERRA-b042407a06	Tanabe (2010)
14.9	-11.82	Plant fragments		6280 ± 50	7150 - 7310	NIES-TERRA-b042407a08	Tanabe (2010)
14.9	-11.82	Shell	Raetellops pulchellus (Adams et Reeve)	6770 ± 40	7220 - 7400	NIES-TERRA-b041207a22	Tanabe (2010)
17.19	-14.11	Plant fragments		6250 ± 60	7000 - 7290	NIES-TERRA-b042407a09	Tanabe (2010)
17.29	-14.21	Shell	Raeta pellicula (Reeve)	7050 ± 60	7430 - 7640	NIES-TERRA-b041207a23	Tanabe (2010)
19.9	-16.82	Shell	Ringiculina doliaris (Gould)	7410 ± 40	7780 - 7960	NIES-TERRA-b052407a04	Tanabe (2010)
20.95	-17.87	Plant fragments		7910 ± 70	8590 - 8990	NIES-TERRA-b052407a08	Tanabe (2010)
23.51	-20.43	Plant fragments		7050 ± 60	7740 - 7980	NIES-TERRA-b042407a10	Tanabe (2010)
25.6	-22.52	Shell	Mitrella yabei (Nomura)	7720 ± 50	8050 - 8310	NIES-TERRA-b041207a24	Tanabe (2010)
26.9	-23.82	Shell	Potamocorbula sp.	8580 ± 40	9100 - 9380	NIES-TERRA-b052407a05	Tanabe (2010)
27.1	-24.02	Shell	Limaria hakodatensis (Tokunaga)	7970 ± 50	8340 - 8540	NIES-TERRA-b041207a29	Tanabe (2010)
27.2	-24.12	Plant fragments		7750 ± 60	8420 - 8630	NIES-TERRA-b042407a11	Tanabe (2010)
27.2	-24.12	Shell	Crassostrea sp.	8010 ± 50	8370 - 8580	NIES-TERRA-b041207a27	Tanabe (2010)
28	-24.92	Shell	Potamocorbula sp.	8580 ± 50	9080 - 9390	NIES-TERRA-b041207a28	Tanabe (2010)
28.7	-25.62	Plant fragments	-	8000 ± 60	8680 - 9010	NIES-TERRA-b052407a09	Tanabe (2010)
30.3	-27.22	Plant fragments		8130 ± 50	8990 - 9150	NIES-TERRA-b052407a10	Tanabe (2010)
32.1	-29.02	Plant fragments		9120 ± 70	10180 - 10440	NIES-TERRA-b042407a12	Tanabe (2010)
TN							
2.63	0.25	Plant fragments		1740 ± 40	1540 - 1740	Beta-175708	Ishihara et al. (2004b)
8.66	-5.78	Shell	Cryptomya busoensis Yokoyama	5780±50	6060 - 6300	Beta-175710	Ishihara et al. (2004b)
10.7	-7.82	Shells	<i>Cryptomya busoensis</i> Yokoyama	6290±50	6630 - 6880	Beta-175711	Ishihara et al. (2004b)
13.1	-10.22	Shells	Mactra cf. chinensis Philippi, Veremolpa micra (Pilsbry), Babylonia cf. ianomica (Reeve)	5840±50	6170 - 6380	Beta-175712	Ishihara et al. (2004b)
16.52	-13.64	Shell fragments		6250+50	6570 - 6840	Beta-175713	Ishihara et al. (2004b)
20.4	-17.52	Shell	Crassostrea sp.	7970 ± 60	8320 - 8560	Beta-175714	Ishihara et al. (2004b)
22.1	-19.22	Shell	Mactra chinensis Philippi	8400±60	8780 - 9200	Beta-175715	Ishihara et al. (2004b)
32.4	-29.52	Plant fragments	:	7860±60	8540 - 8810	Beta-175717	Ishihara et al. (2004b)
ML 7.80	-5.95	Shell	Mactra chinensis Philippi	3420±50	3160 - 3420	Beta-175720	Tanabe et al. (2008b)
9.40	-7.55	Shell	Mactra chinensis Philippi	4680 ± 50	4800 - 5050	Beta-175721	Tanabe et al. (2008b)
12.25	-10.40	Shell	Cryptomya busoensis Yokoyama	3800±50	3600 - 3880	Beta-175722	Tanabe et al. (2008b)
16.15	-14.30	Shells	Umbonium sp., Mactra chinensis Philippi, Meretrix lusoria (Röding), Ruditapes philippinarum (Adams et Reeve)	6320±50	6650 - 6910	Beta-175723	Tanabe et al. (2008b)
19.60	-17.75	Shells	Veremolpa micra (Pilsbry), Mactra chinensis Philippi, Callista chinensis (Holten)	4150 ± 40	4090 - 4360	Beta-175724	Tanabe et al. (2008b)
21.50	-19.65	Shell	Mactra chinensis Philippi	4150 ± 40	4090 - 4360	Beta-175725	Tanabe et al. (2008b)
23.30	-21.45	Shells	Cryptomya busoensis Yokoyama, Mactra chinensis Philippi	4210±50	4140 - 4430	Beta-175726	Tanabe et al. (2008b)
26.75	-24.90	Plant fragments		3910 ± 40	4230 - 4440	Beta-175727	Tanabe et al. (2008b)

ı.

29.20	-27.35	Plant fragments		3900 ± 40	4230 - 4430	Beta-175728	Tanabe et al. (2008b)
32.95	-31.10	Shell	Babylonia japonica (Reeve)	5950±50	6270 - 6480	Beta-175729	Tanabe et al. (2008b)
35.90	-34.05	Shell	Potamocorbula sp.	7470 ± 60	7790 - 8070	Beta-175730	Tanabe et al. (2008b)
38.70	-36.85	Plant fragments		8410 ± 60	9300 - 9530	Beta-175731	Tanabe et al. (2008b)
46.00	44.15	Plant fragments		10050 ± 40	11390 - 11770	Beta-189141	Tanabe et al. (2008b)
49.70	47.85	Plant fragments		10470 ± 40	12330 - 12660	Beta-189142	Tanabe et al. (2008b)
52.10 GS_AHH_1	-50.25	Plant fragments		11150 ± 40	12940 - 13150	Beta-189143	Tanabe et al. (2008b)
2.37	0.17	Shell fragments		4340 ± 40	4370-4610	NIES-TERRA-b041207a03	Tanabe et al. (2010b)
4.82	-2.28	Shell	<i>Crvntomva busoensis</i> (Yokovama)	5070 + 90	5230-5620	NIES-TERRA-b041207a04	Tanabe et al. (2010b)
4.97	-2.43	Shell	Crassostrea sp.	5250 ± 40	5530-5720	NIES-TERRA-b041207a05	Tanabe et al. (2010b)
5.48	-2.94	Shell fragments	-	5230 ± 40	5480-5680	NIES-TERRA-b041207a06	Tanabe et al. (2010b)
6.81	-4.27	Shell	Veremolpa micra (Pilsbry)	5250 ± 40	5530-5720	NIES-TERRA-b041207a08	Tanabe et al. (2010b)
7.78	-5.24	Shell	Veremolpa micra (Pilsbry)	5340 ± 40	5600-5830	NIES-TERRA-b041207a09	Tanabe et al. (2010b)
9.36	-6.82	Shell	Dosinella angulosa (Philippi)	6390 ± 40	6750-6980	NIES-TERRA-b041207a10	Tanabe et al. (2010b)
12.55	-10.01	Crab shell		7260 ± 50	7610-7840	NIES-TERRA-b041207a11	Tanabe et al. (2010b)
13.1	-10.56	Shell	Dosinella angulosa (Philippi)	6810 ± 40	7250-7410	NIES-TERRA-b041207a12	Tanabe et al. (2010b)
13.45	-10.91	Shell	Veremolpa micra (Pilsbry)	7400 ± 50	7740-7960	NIES-TERRA-b041207a15	Tanabe et al. (2010b)
14.23	-11.69	Shell	Dosinella angulosa (Philippi)	7870 ± 50	8200-8430	NIES-TERRA-b041207a16	Tanabe et al. (2010b)
15.94	-13.4	Shell	Crassostrea sp.	8440 ± 50	8940-9230	NIES-TERRA-b041207a17	Tanabe et al. (2010b)
16.2	-13.66	Plant fragmants		7870 ± 60	8540-8810	NIES-TERRA-b042407a15	Tanabe et al. (2010b)
17.28	-14.74	Plant fragmants		8070 ± 60	8720-9140	NIES-TERRA-b042407a16	Tanabe et al. (2010b)
17.91	-15.37	Plant fragmants		8210 ± 60	9010-9320	NIES-TERRA-b042407a17	Tanabe et al. (2010b)
18.49	-15.95	Plant fragmants		8040 ± 60	8700–9090	NIES-TERRA-b042407a18	Tanabe et al. (2010b)
20.37	-17.83	Plant fragmants		8170 ± 70	8990-9320	NIES-TERRA-b042407a20	Tanabe et al. (2010b)
22.57	-20.03	Plant fragmants		37800 ± 300	41890-42890	NIES-TERRA-b042407a21	Tanabe et al. (2010b)
HA							
3.20	-3.23	Shell	Mya japonica Jay	4490 ± 40	4550 - 4810	Beta-176647	Ishihara et al. (2004b)
5.75	-5.78	Plant fragments		2470 ± 60	2360 - 2720	Beta-176648	Ishihara et al. (2004b)
8.55	-8.58	Shell	Dosinella angulosa (Philippi)	4700 ± 40	4830 - 5040	Beta-176649	Ishihara et al. (2004b)
11.70	-11.73	Shell	Dosinella angulosa (Philippi)	5050 ± 40	5300 - 5520	Beta-176650	Ishihara et al. (2004b)
13.80	-13.83	Plant fragments		4440 ± 40	4880 - 5080	Beta-176651	Ishihara et al. (2004b)
15.80	-15.83	Shell	Dosinella angulosa (Philippi)	5710 ± 40	5990 - 6230	Beta-176652	Ishihara et al. (2004b)
23.60	-23.63	Shell	Mactra cf. chinensis Philippi	8470 ± 40	8990 - 9230	Beta-176654	Ishihara et al. (2004b)
25.49	-25.52	Plant fragments		8410 ± 40	9400 - 9520	Beta-176655	Ishihara et al. (2004b)
28.50	-28.53	Plant fragments		8630±40	9530 - 9680	Beta-176656	Ishihara et al. (2004b)
34.65	-34.68	Shell	Corbicula cf. japonica Prime	9280 ± 40	9990 - 10220	Beta-176657	Ishihara et al. (2004b)
37.05	-37.08	Plant fragments		9100 ± 40	10190 - 10300	Beta-176658	Ishihara et al. (2004b)
42.90	42.93	Plant fragments		9580±40	10740 - 11110	Beta-176659	Ishihara et al. (2004b)
48.15	48.18	Plant fragments		10390 ± 40	12080 - 12400	Beta-176661	Ishihara et al. (2004b)
51.30	-51.33	Plant fragments		11330 ± 40	13120 - 13280	Beta-176662	Ishihara et al. (2004b)
GS-KNJ-1							
7.02	-6.59	Plant fragments		2530 ± 40	2490 - 2750	Beta-189144	Tanabe et al. (2006b)
7.65	-7.22	Shell	Potamocorbula sp.	3330±40	3060 - 3320	Beta-189145	Tanabe et al. (2006b)
10.80	-10.37	Shell	Potamocorbula sp.	3430 ± 40	3200 - 3410	Beta-189120	Tanabe et al. (2006b)
13.65	-13.22	Echinoderm		3450 ± 40	3220 - 3430	Beta-189121	Tanabe et al. (2006b)
15.77	-15.34	Shell	Potamocorbula sp.	3710±70	3450 - 3820	NIES-TERRA-b122504a33	Tanabe et al. (2006b)
16.48	-16.05	Shell	Gastropoda gen. et sp. indet.	6270±50	6600 - 6870	Beta-189122	Tanabe et al. (2006b)
17.84	-17.41	Shell fragments		8060±50	8390-8640	Beta-189123	Tanabe et al. (2006b)
18.46	-18.03	Shell	Gastropoda gen. et sp. indet.	7620±40	7980-8170	Beta-189124	Tanabe et al. (2006b)
19.40	-18.97	Shell	Bivalvia gen. et sp. indet.	5880 ± 40	6210 - 6390	Beta-189125	Tanabe et al. (2006b)

20.73	-20.30	Shell	Veremolpa micra (Pilsbry)	5050±40 4260-100	5300 - 5520	Beta-189126	Tanabe et al. (2006b)
24.72	-24.29	Shell	Solen sp. Solen sp.	4250±100 6360±40	4120 - 4/10 6720 - 6940	NIES-1 ENNA-01 22004434 Beta-1891 27	Tanabe et al. (2006b)
25.73	-25.30	Shell	Veremolpa micra (Pilsbry)	6080 ± 50	6390 - 6640	NIES-TERRA-b122504a36	Tanabe et al. (2006b)
26.78	-26.35	Shells	Ruditapes philippinarum (Adams et Reeve), Veremolpa micra (Pilsbry), Nucula paulula A. Adams	4510±40	4580 - 4820	NIES-TERRA-b122504a37	Tanabe et al. (2006b)
27.16	-26.73	Shell fragments		5580 ± 40	5880 - 6100	NIES-TERRA-b122504a38	Tanabe et al. (2006b)
27.82	-27.39	Shell fragments		4660 ± 40	4800 - 5000	Beta-189128	Tanabe et al. (2006b)
29.45	-29.02	Shell fragments		6550±120	6760 - 7310	NIES-TERRA-b122504a39	Tanabe et al. (2006b)
31.05	-30.62	Shells	Cadella delta (Yokoyama), Potamocorbula sp.	5710 ± 40	5990 - 6230	Beta-189129	Tanabe et al. (2006b)
33.56	-33.13	Shell	Potamocorbula sp.	6310 ± 50	6650 - 6900	Beta-189130	Tanabe et al. (2006b)
36.15	-35.72	Shell	Panopea japonica A. Adams	6360 ± 50	0969 - 0699	Beta-189131	Tanabe et al. (2006b)
36.69	-36.26	Shell	Potamocorbula sp.	9180 ± 80	9700 - 10180	NIES-TERRA-b013105a04	Tanabe et al. (2006b)
37.30	-36.87	Shell	Potamocorbula sp.	8980±50	9520 - 9830	NIES-TERRA-b013105a05	Tanabe et al. (2006b)
38.12	-37.69	Shell	Potamocorbula sp.	0070±60	9560 - 10040	NIES-TERRA-b013105a06	Tanabe et al. (2006b)
39.40	-38.97	Shell	Potamocorbula sp.	9110 ± 40	9690 - 10070	Beta-189132	Tanabe et al. (2006b)
44.30	43.87	Plant fragments		8930±180	9550 - 10430	NIES-TERRA-b011005a08	Tanabe et al. (2006b)
45.50	45.07	Plant fragments		9520±70	10650 - 11110	NIES-TERRA-b010505a28	Tanabe et al. (2006b)
45.90	45.47	Plant fragments		10010 ± 40	11300 - 11650	Beta-189134	Tanabe et al. (2006b)
49.62	49.19	Plant fragments		10300 ± 50	11960 - 12250	Beta-189135	Tanabe et al. (2006b)
52.30	-51.87	Plant fragments		10850 ± 40	12810 - 12890	Beta-189136	Tanabe et al. (2006b)
54.10	-53.67	Organic mud		12090 ± 50	13810 - 14070	Beta-189137	Tanabe et al. (2006b)
69 45	-69.02	Shell	Mactra chinensis Philinni	>45520		Reta-189139	Tanahe et al (2006h)
GS-AMG-1	1						
2.16	-0.49	Plant fragments		2230 ± 40	2150 - 2340	NIES-TERRA-b081205a03	Tanabe et al. (2006c)
2.42	-0.75	Plant fragments		4680±50	5310 - 5480	NIES-TERRA-b081205a04	Tanabe et al. (2006c)
2.77	-1.10	Plant fragments		4020 ± 40	4410 - 4580	NIES-TERRA-b081205a05	Tanabe et al. (2006c)
2.98	-1.31	Plant fragments		2630 ± 40	2710 - 2810	NIES-TERRA-b081205a06	Tanabe et al. (2006c)
3.60	-1.93	Plant fragments		1970 ± 40	1860 - 2000	NIES-TERRA-b081205a08	Tanabe et al. (2006c)
3.83	-2.16	Plant fragments		4650 ± 40	5310 - 5470	NIES-TERRA-b081205a09	Tanabe et al. (2006c)
4.90	-3.23	Plant fragments		4690±50	5320 - 5490	NIES-TERRA-b081205a10	Tanabe et al. (2006c)
7.88	-6.21	Plant fragments		4900 ± 80	5470 - 5770	NIES-TERRA-b081205a11	Tanabe et al. (2006c)
9.35	-7.68	Shell	Dosinella angulosa (Philippi)	5890±70	6170 - 6460	NIES-TERRA-b080505a03	Tanabe et al. (2006c)
10.63	-8.96	Shell	Dosinella angulosa (Philippi)	6140 ± 40	6450 - 6680	NIES-TERRA-b080505a04	Tanabe et al. (2006c)
11.97	-10.30	Shell	Dosinella angulosa (Philippi)	6700 ± 40	7150-7320	NIES-TERRA-b080505a05	Tanabe et al. (2006c)
14.30	-12.63	Shell	Dosinella angulosa (Philippi)	6960±70	7330 - 7580	NIES-TERRA-b080505a06	Tanabe et al. (2006c)
15.46	-13.79	Shell fragments		6220±70	6480 - 6840	NIES-TERRA-b080505a08	Tanabe et al. (2006c)
16.75	-15.08	Shell fragments		7550±50	7920 - 8140	NIES-TERRA-b080505a09	Tanabe et al. (2006c)
17.50	-15.83	Shell	Dosinella angulosa (Philippi)	7760±50	8120 - 8350	NIES-TERRA-b080505a10	Tanabe et al. (2006c)
19.25	-17.58	Shell fragments		8450±50	8960 - 9240	NIES-TERRA-b080505a11	Tanabe et al. (2006c)
20.17	-18.50	Shell fragments		8200±50	8560 - 8920	NIES-TERRA-b080505a13	Tanabe et al. (2006c)
22.00	-20.33	Plant fragments		7870±50	8550 - 8790	NIES-TERRA-b082205a29	Tanabe et al. (2006c)
23.00	-21.33	Shell	Potamocorbula sp.	8620 ± 130	8970 - 9530	NIES-TERRA-b080505a14	Tanabe et al. (2006c)
23.24	-21.57	Shell fragments		8690 ± 50	9240 - 9470	NIES-TERRA-b080505a15	Tanabe et al. (2006c)
24.11	-22.44	Plant fragments		7800 ± 50	8440 - 8660	NIES-TERRA-b081205a13	Tanabe et al. (2006c)
24.17	-22.50	Plant fragments		7960 ± 40	8680 - 8990	Beta-209334	Tanabe et al. (2006c)
25.31	-23.64	Plant fragments		8210±60	9010 - 9320	Beta-209335	Tanabe et al. (2006c)
25.44	-23.77	Plant fragments		7580±50	8310 - 8460	NIES-TERRA-b081205a14	Tanabe et al. (2006c)
25.55	-23.88	Plant fragments		8310±50	9200 - 9460	NIES-TERRA-b081205a15	Tanabe et al. (2006c)
26.92	-25.25	Plant fragments		7710 ± 60	8400 - 8590	NIES-TERRA-b081205a16	Tanabe et al. (2006c)
27.94	-26.27	Plant fragments		8450±60	9400 - 9540	NIES-TERRA-b081205a19	Tanabe et al. (2006c)

• • • • • • •

28.08 33.08	Plant fragments Plant fragments		8460±50 8680±60	9410 - 9540 9540 - 9820	NIES-TERRA-b082205a30 NIES-TERRA-b081205a20	Tanabe et al. (2006c) Tanabe et al. (2006c)
Plant fra Plant fra	gments gments		8770±50 8700±50	9560 - 9930 9540 - 9800	NIES-TERRA-b081205a21 NIES-TERRA-b081205a22	Tanabe et al. (2006c) Tanabe et al. (2006c)
Plant fr	agments		9130±60	10200 - 10430	NIES-TERRA-b081205a24	Tanabe et al. (2006c)
Plant fr	agments		894070	9890 - 10230	NIES-TERRA-b081205a25	Tanabe et al. (2006c)
Plant fr	agments		9830+60	11160 - 11390	NIES-TERRA-b001203a20 NIES-TERRA-b081205a27	Tanabe et al. (2006c)
Plant f	ragments		9350 ± 60	10390 - 10730	NIES-TERRA-b081205a29	Tanabe et al. (2006c)
Plant 1	fragments		10970 ± 60	12840 - 13040	NIES-TERRA-b081205a30	Tanabe et al. (2006c)
Plant j	fragments		10490 ± 90	12110 - 12750	NIES-TERRA-b081205a31	Tanabe et al. (2006c)
Plant	fragments		2500+40	2450 - 2740	Reta-189819	Tanahe et al. (2006h)
Plant	fragments		1500±50	1310 - 1450	NIES-TERRA-b122004a31	Tanabe et al. (2006b)
Shel	, 1	Umbonium sp.	6840 ± 40	7270 - 7430	Beta-189820	Tanabe et al. (2006b)
She	II	Mactra chinensis Philippi	5640 ± 40	5930 - 6160	NIES-TERRA-b013105a07	Tanabe et al. (2006b)
She	511	Mactra chinensis Philippi	5430±50	5670 - 5910	NIES-TERRA-b013105a08	Tanabe et al. (2006b)
She	lle	Mactra chinensis Philippi	5880±40	6210 - 6390	Beta-189821	Tanabe et al. (2006b)
S	ell	Solen sp.	5630±40	5920 - 6160	NIES-TERRA-b013105a10	Tanabe et al. (2006b)
S	ell fragments		5690 ± 40	5980 - 6210	Beta-189822	Tanabe et al. (2006b)
S	llən	Dosinella angulosa (Philippi)	5930±50	6250 - 6460	NIES-TERRA-b013105a11	Tanabe et al. (2006b)
S	ell	Lucinoma amulatum (Reeve)	6170±40	6490 - 6720	Beta-189823	Tanabe et al. (2006b)
S	ell	Moerella sp.	6360 ± 40	6720 - 6940	Beta-189824	Tanabe et al. (2006b)
S	llər	Cadella delta (Yokoyama)	6590±50	6980 - 7240	NIES-TERRA-b013105a12	Tanabe et al. (2006b)
\mathbf{S}	hell	Macoma sp.	7060±50	7450 - 7640	NIES-TERRA-b013105a13	Tanabe et al. (2006b)
S	ell	Raetellops pulchellus (Adams et Reeve)	7860 ± 40	8210 - 8400	Beta-189825	Tanabe et al. (2006b)
S	ell fragments		8030±60	8370 - 8620	NIES-TERRA-b013105a14	Tanabe et al. (2006b)
S	lla	Potamocorbula sp.	8650±40	9210 - 9440	Beta-189826	Tanabe et al. (2006b)
\mathbf{v}	hell	Potamocorbula sp.	8970±40	9520 - 9780	Beta-189827	Tanabe et al. (2006b)
2	hell	Potamocorbula sp.	8900±40	94/0-96/0	Beta-189828	I anabe et al. (2006b)
0	rganic mud		9610 ± 40	10770 - 11040	Beta-189815	Tanabe et al. (2006b)
0	rganic mud		10110 ± 40	11600 - 11840	Beta-189816	Tanabe et al. (2006b)
Ы	ant fragments		970±70	730 - 990	Beta-189146	Tanabe et al. (2008b)
∞	hell	Dosinella angulosa (Philippi)	2910±40	2540 - 2770	Beta-189147	Tanabe et al. (2008b)
\mathbf{S}	hell	Dosinella angulosa (Philippi)	3850±40	3680 - 3930	Beta-189148	Tanabe et al. (2008b)
\mathbf{s}	hell	Raetellops pulchellus (Adams et Reeve)	2730 ± 40	2320 - 2600	Beta-177895	Miyachi et al. (2004)
S	hell	Dosinella angulosa (Philippi)	3390 ± 40	3150 - 3370	Beta-177896	Miyachi et al. (2004)
\mathbf{S}	hell	Cryptomya busoensis Yokoyama	3860 ± 40	3690 - 3950	Beta-177897	Miyachi et al. (2004)
\mathbf{S}	hell	Dosinella angulosa (Philippi)	4010 ± 40	3890 - 4150	Beta-177898	Miyachi et al. (2004)
S	lləl	Dosinella angulosa (Philippi)	4120 ± 40	4060 - 4340	Beta-177899	Miyachi et al. (2004)
Щ	chinoderm		4220 ± 40	4180 - 4420	Beta-177900	Miyachi et al. (2004)
Б	hinoderm		4280 ± 40	4260 - 4520	Beta-177901	Miyachi et al. (2004)
Sh	ell fragments		4710 ± 40	4820 - 5060	Beta-183669	Miyachi et al. (2004)
Sh	ell fragments		5660 ± 40	5940 - 6180	Beta-183670	Miyachi et al. (2004)
ß	ell fragments		7180 ± 50	7560 - 7760	Beta-177902	Miyachi et al. (2004)
S	llər	Potamocorbula sp.	9140 ± 40	9740 - 10100	Beta-183671	Miyachi et al. (2004)
Š	ell	Corbicula japonica Prime	9130 ± 50	9690 - 10110	Beta-177903	Miyachi et al. (2004)
Sh	ell	Potamocorbula sp.	9330 ± 60	9990 - 10330	Beta-183672	Miyachi et al. (2004)
Plan	t fragments		9080 ± 40	10180 - 10300	Beta-183673	Miyachi et al. (2004)

36.74	-38.73	Plant fragments		9490 ± 50	10590 - 10870	Beta-177905	Miyachi et al. (2004)
39.05	-41.04	Plant fragments		9600 ± 50	10760 - 11160	Beta-177906	Miyachi et al. (2004)
42.64	-44.63	Plant fragments		9730 ± 50	11080 - 11240	Beta-177907	Miyachi et al. (2004)
45.46	-47.45	Plant fragments		9980 ± 50	11250 - 11630	Beta-177908	Miyachi et al. (2004)
50.06	-52.05	Plant fragments		10640 ± 50	12600 - 12820	Beta-177909	Miyachi et al. (2004)
54.01	-56.00	Plant fragments		11120 ± 50	12920 - 13120	Beta-177910	Miyachi et al. (2004)
55.43	-57.42	Plant fragments		11140 ± 105	12880 - 13220	JNC-5569	Miyachi et al. (2004)
DK							
5.03	-4.95	Shell	Corbicula japonica Prime	1190 ± 40	650-830	Beta-171036	Ishihara et al. (2004b)
7.5	-7.42	Shell	Corbicula japonica Prime	1090 ± 40	560-720	Beta-171037	Ishihara et al. (2004b)
9.7	-9.62	Shell fragments		2260 ± 40	1760-1980	Beta-171038	Ishihara et al. (2004b)
14.58	-14.5	Shell	Dosinella angulosa (Philippi)	2610 ± 40	2150-2390	Beta-171039	Ishihara et al. (2004b)
15.34	-15.26	Shell	Dosinella angulosa (Philippi)	3290 ± 40	2990–3260	Beta-171040	Ishihara et al. (2004b)
19.8	-19.72	Shell	Dosinella angulosa (Philippi)	4590 ± 40	4680-4930	Beta-171041	Ishihara et al. (2004b)
23.15	-23.07	Shell	Dosinella angulosa (Philippi)	5830 ± 40	6170-6340	Beta-171042	Ishihara et al. (2004b)
26.6	-26.52	Shell	Mactra chinensis Philippi	6290 ± 40	6640-6860	Beta-171043	Ishihara et al. (2004b)
27.3	-27.22	Shell	Dosinella angulosa (Philippi)	6700 ± 40	7150-7320	Beta-171044	Ishihara et al. (2004b)
29.3	-29.22	Shell fragments		7900 ± 40	8280-8460	Beta-176663	Ishihara et al. (2004b)
33.15	-33.07	Shell fragments		8520 ± 40	9020-9280	Beta-176664	Ishihara et al. (2004b)
35.25	-35.17	Shell	Mactra chinensis Philippi	8480 ± 40	8990-9240	Beta-171046	Ishihara et al. (2004b)
36.1	-36.02	Shell fragments	1	9280 ± 40	9990-10220	Beta-171047	Ishihara et al. (2004b)
41.5	41.42	Plant fragments		9410 ± 40	10550 - 10740	Beta-171048	Ishihara et al. (2004b)
44.2	44.12	Plant fragments		9890 + 40	11220-11370	Beta-171049	Ishihara et al. (2004b)
47.25	47.17	Plant fragments		9980 + 40	11260-11620	Beta-171050	Ishihara et al. (2004b)
40.38	-49.3	Plant fragments		9810 ± 50	11170-11320	Beta-171051	Ishihara et al (2004b)
50.09	-50.01	Plant fragments		10400 + 50	12080-12430	Beta-171052	Ishihara et al (2004b)
53.55	-53.47	Plant framents		10780 ± 50	11820-12220	Beta-171053	Ishihara et al (2004b)
C LS	-57.12	Plant fragments		10260 ± 50 10770 + 50	12560-12220	Beta-171054	Ishihara et al. (2004b)
I'HSI'SS	41.10-			00770101	00071-00071	LCOT / 1-1900	
3.5	-0.81	Plant fragments		730 + 40	140-220	terra-012109a12	Tanahe et al (2012)
2.64	20.0				0 530		$T_{2} = T_{2} = T_{2$
5.04 6.54	-3.85	Shell fragments	Certinuaea ajaajarrensis (Marun)	780 ± 30	0-020 330-490	terra-011909a18 terra-011909a18	Tanabe et al. (2012) Tanabe et al. (2012)
10.1	-7.41	Plant fragments		2770 + 40	2780-2960	terra-012109a15	Tanahe et al. (2012)
15.51	-12.82	Shell	Dosinella angulosa (Philinni)	2150 ± 30	1640-1840	terra-011909a20	Tanabe et al. (2012)
18.8	-16.11	Shell	Dosinella angulosa (Philippi)	2880 ± 30	2530-2740	terra-011909a21	Tanabe et al. (2012)
22.61	-19.92	Shell	Dosinella angulosa (Philippi)	3480 ± 40	3250-3460	terra-011909a22	Tanabe et al. (2012)
25.2	-22.51	Shell	Dosinella angulosa (Philippi)	5790 ± 30	6150-6280	terra-011909a23	Tanabe et al. (2012)
27.34	-24.65	Shell fragments		8020 ± 60	8360-8610	terra-011909a24	Tanabe et al. (2012)
28.5	-25.81	Shell	<i>Mitrella yabei</i> (Nomura)	8150 ± 40	8510-8780	terra-011909a27	Tanabe et al. (2012)
29.15	-26.46	Plant fragments		7840 ± 30	8550-8700	terra-012109a16	Tanabe et al. (2012)
29.36	-26.67	Shell fragments		8810 ± 30	9420–9530	terra-011909a28	Tanabe et al. (2012)
29.4	-26.71	Echinoderm		8510 ± 80	8970–9380	terra-012609a06	Tanabe et al. (2012)
30.3	-27.61	Shell fragments		8640 ± 40	9190–9430	terra-011909a29	Tanabe et al. (2012)
34.9	-32.21	Shell fragments		8720 ± 40	9290–9480	terra-011909a30	Tanabe et al. (2012)
37.94	-35.25	Shell	Batillaria multiformis (Lischke)	9160 ± 30	9810-10110	terra-011909a32	Tanabe et al. (2012)
39.16	-36.47	Shell	Potamocorbula sp.	9470 ± 80	10170-10500	terra-012609a07	Tanabe et al. (2012)
40.95	-38.26	Shell	Potamocorbula sp.	9320 ± 50	10000-10280	terra-011909a33	Tanabe et al. (2012)
45.23	42.54	Plant fragments		9100 ± 50	10190-10310	Beta-289597	Tanabe et al. (2012)
46.61	43.92	Shell	Potanocorbula sp.	9840 ± 40	10580-10910	terra-011909a35	Tanabe et al. (2012)
47.51	44.82	Shell	Corbicula sp.	10020 ± 40	10880-11150	terra-011909a36	Tanabe et al. (2012)
48.55	45.86	Shell fragments		9950 ± 60	10680 - 11110	terra-011909a39	Tanabe et al. (2012)

Tanabe et al. (2012) Tanabe et al. (2012)	Tanabe et al. (2012)		Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)	Tanabe et al. (2012)						
Beta-289599 Beta-289600	Beta-289601	Beta-289602	Beta-289603	terra-012109a22	Beta-289604	Beta-289605	Beta-289606		IAAA-82888	IAAA-82889	IAAA-82890	IAAA-82891	IAAA-82892	IAAA-82893	IAAA-82894	IAAA-82895	IAAA-82896	IAAA-82897	IAAA-82898	IAAA-82899	IAAA-82900	IAAA-82901	IAAA-82902	IAAA-82903	IAAA-82904	IAAA-82905	IAAA-82906	IAAA-82907	IAAA-82908	IAAA-82909	IAAA-82910	IAAA-82911
11250–11630 12370–12580	12520-12660	12690-13080	13290-13610	13020-13230	13840-14250				490–610	1330-1510	1550-1750	4540-4800	6290-6500	6470-6690	6770-7000	7820-8000	8270-8450	8430 - 8660	9150 - 9440	9110-9390	9440–9610	9500–9800	9910-10200	10070 - 10330	10410 - 10700	11070-11240	10730 - 11090	11270-11650	11400 - 11840	12050-12400	12890-13080	13250-13460
9980 ± 50 10480 ± 50	10610 ± 50	11000 ± 50	11590 ± 50	11220 ± 40	12210 ± 60	> 43500	> 43500		930 ± 30	1870 ± 30	2080 ± 30	4480 ± 40	5990 ± 40	6150 ± 40	6410 ± 40	7450 ± 40	7890 ± 40	8090 ± 40	8640 ± 50	8590 ± 40	8860 ± 40	8960 ± 50	9260 ± 50	9340 ± 50	9340 ± 50	9720 ± 50	9560 ± 40	10000 ± 50	10100 ± 50	10380 ± 50	11050 ± 50	11520 ± 50
									Macoma contabulata (Deshayes)	Veremolpa micra (Pilsbry)	Dosinella angulosa (Philippi)	Dosinella angulosa (Philippi)	Dosinella angulosa (Philippi)	Dosinella angulosa (Philippi)		Barnea sp.	Raetellops pulchellus (Adams et Reeve)		Potamocorbula sp.													
Plant fragments Plant fragments	Plant fragments	Plant fragments	Plant fragments	Plant fragments	Plant fragments	Plant fragments	Plant fragments		Shell	Shell	Shell	Shell	Shell	Shell	Shell fragments	Shell	Shell	Shell fragments	Shell	Shell	Shell	Shell	Shell	Shell	Plant fragments							
48.06 49.83	-51.18	-51.44	-52.88	-52.94	-53.36	-55.89	-57.2		-7.97	-12.42	-14.22	-16.87	-18.72	-19.6	-20.73	-22.52	-24.34	-26.47	-27.97	-29.32	-31.27	-32.32	-34.82	-35.57	-38.52	44.32	45.52	-48.67	-51.87	-54.82	-57.17	-60.27
50.75 52.52	53.87	54.13	55.57	55.63	56.05	58.58	59.89	GS-KSM-1	15.95	20.4	22.20	24.85	26.7	27.58	28.71	30.5	32.32	34.45	35.95	37.3	39.25	40.3	42.8	43.55	46.5	52.3	53.5	56.65	59.85	62.8	65.15	68.25