福岡沿岸域20万分の1空中磁気図(全磁力異常)説明書

Explanatory Note of 1:200,000 Aeromagnetic map of the coastal zone of Fukuoka (Total Magnetic Intensity)

大熊茂雄¹·中塚 正¹·金谷 弘²

Shigeo Okuma¹, Tadashi Nakatsuka¹ and Hiroshi Kanaya²

¹ 地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation) ² 元地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation),故人(deceased)

Abstract: An aeromagnetic map of the coastal zone of Fukuoka Prefecture (total magnetic intensity, 1:200,000) has been made for a compilation of the Digital Geoscience Map of the area. The total magnetic intensity anomalies within the area have been extracted from the aeromagnetic anomaly database on a smoothed surface 1,500 m above terrain. The reduced to the pole anomalies have been also calculated from the total magnetic intensity anomalies on the surface and compared to the geology (Ozaki et al., 2013) and rock magnetic properties (Petrophysical Database of Basement rocks in Japan for the 21st Century (PB-Rock 21), http://riodb02.ibase.aist.go.jp/pb-rock21/index.html) of the area.

In general, the aeromagnetic anomalies seem to be associated with the outcrops of basement rocks such as late Cretaceous granitic rocks and Paleozoic ultramafic rocks. As for magnetic susceptibilities of the late Cretaceous granitic rocks, there are obvious differences among them: older and younger members of late Cretaceous granitic rocks show magnetic susceptibilities equal and higher than 10⁻³ (SI) and lower than 10⁻³ (SI), respectively. Exceptions are older late Cretaceous granitic rocks east of the Tagawa-Kokura fault, which show magnetic susceptibilities lower than 10⁻³ (SI). Magnetic highs lie mainly over the older late Cretaceous granitic rocks and reflect their high magnetic susceptibilities.

The most obvious magnetic anomaly of 400 nT is distributed with a wavelength of about 50km in the E-W direction over the Seburi Mountains southwest of Fukuoka. To better understand the subsurface structure of the area, 3D imaging with source volume minimization (Nakatsuka and Okuma, 2009) was applied to the aeromagnetic anomalies. An E-W cross-section of the 3D magnetic model shows the magnetization high area of 1.0 A/m occupies the Seburi Mountains with a thickness of 20km. According to the seismic activity of the area from 1923 to 2008, major earthquakes with magnitudes larger than 3.0 seem to have occurred only at the boundary of the magnetization high area but not inside. This suggests the magnetization high area indicates the distribution of the granitic body of the Seburi Mountains.

Keywords: aeromagnetic map, magnetic anomaly, active fault, epicenter, Fukuoka

要旨

本邦沿岸域の地質・地下構造の理解を目的とした 多面的な地質情報集作成のため、今回、既存の空中 磁気データを編集して、「福岡沿岸域 20 万分の1空 中磁気図(全磁力異常)」を作成した.

対地1,500mの滑らかな高度での空中磁気データ (中塚・大熊,2009)から,図面作成範囲のデータ を抽出し,福岡沿岸域の空中磁気図(全磁力異常) を編集した.また,磁気異常分布の説明のために, 全磁力異常から極磁力異常への変換を行った.極磁 力異常と地質図(尾崎ほか,2013)との詳細な比較 検討の結果,福岡沿岸域では,背振山地で代表され る後期白亜紀の花崗岩露出地域で高磁気異常が分布 することが分かった.詳細な解析地域での岩石磁気 の検討の結果,後期白亜紀花崗岩体のうち高磁化率 を示すものは,一般に旧期岩体であり,新期岩体は 低磁化率である.これらの結果は,磁気異常図にお いて,それぞれ高磁気異常と低磁気異常に対応して いる.花崗岩体とは別に,三郡山地に露出する超塩 基性岩体に対応しても顕著な磁気異常が分布する. 本地域の重力図(駒澤・大熊,2013)を参照すると, 三郡山地の超塩基性岩体で代表される古生層に対応 して高重力異常が分布するが,後期白亜紀花崗岩体 ではそれほど高重力異常を示すわけではない.これ は,磁気異常と重力異常とを比較検討することに よって,当該地域の地質構造を議論できる可能性を 示唆している.

1. はじめに

本磁気図は、産業技術総合研究所の政策予算研究 「沿岸域の地質・活断層調査-陸海接合の物理探査」 において、海陸シームレス地質情報に関わる数値地 質図整備の一環として、福岡沿岸域の空中磁気図と して作成されたものである.

本磁気図は、対地高度1,500mの面上での空中磁 気データ(中塚・大熊,2009)を利用して、図面作 成範囲についてデータの切り出しを行い、図化した ものである.空中磁気図に図化された磁気異常は、 地下を構成する岩石の磁性や地下構造の変化に対応 して変動するため、逆に磁気異常から地下地質構造 を推定することができる.

本論では,空中磁気図作成の過程について説明す るとともに,作成された空中磁気図から読み取れる 磁気異常の特徴について報告する.

2. 空中磁気データ

今回の空中磁気図作成に使用したデータは、対地 高度1,500mの面上での空中磁気データ(中塚・大熊, 2009)である.これは、「日本空中磁気データベース」 (地質調査総合センター,2005)に収録された磁気 異常分布データを用いて、統一的に設定した滑らか な高度面での磁気異常分布を求める処理を行い、日 本全国をカバーする緯経度メッシュ(0.1 分メッ シュ)における磁気異常値分布データを作成したも のである.

「日本空中磁気データベース」では、原調査の生 に近いデータ(中塚ほか、2005)が収録されている ため、各調査の仕様の相違・特徴に対応して特性の 若干異なるデータとなっており、接合磁気図におい ても飛行高度の相違などの影響が反映されている. 中塚・大熊(2009)では、地下構造に対する特性が なるべく揃うように、平滑化した地形面から1,500m 上方の高度面を基準に選び、等価ソースを利用した 上方接続操作に相当するデータ処理を行っている.

3. 空中磁気図の作成

対地高度 1,500m の面上での空中磁気データ(中 塚・大熊, 2009)は、緯経度 0.1 分毎のグリッドデー タとなっている.これを WGS84 系の UTM 座標値 (ゾーン 54)に変換し、図面の作成範囲(130°00' E~131°00'E、33°20'N~34°40'N)を 含む若干広い範囲(X(南北方向):3688~3838 km,Y(東西方向):591~687 km)の南北 150km、東西 96km のデータを 200m 間隔で切り出 した.したがって,格子点数は,南北751点,東西481点である.切り出した範囲の地形図を第1図に,磁気異常の作成面高度を第2図に,全磁力異常を第3図に示す.

次に、磁気異常分布と磁気異常源との対応付けを 容易にするために、全磁力異常から極磁力異常への 変換を行った.極磁力異常とは、北磁極で観測した 場合の磁気異常分布を示すもので、全磁力異常が単 一の異常岩体に対して日本周辺の中緯度地方では、 正負一対の異常分布を示すのに対し、単一の正異常 分布を示すため、異常源との対比がつけやすくなる.

全磁力異常データ(第3図)から地形モデル(上面:地形,下面:海水準下3,000m)の磁化分布を 求め,その磁化方向と外部磁場方向の回転に相当す る演算を行って,極磁力異常分布(第4図)を計算 した.なお,磁化分布を求める際は,磁化は外部磁 場方向(伏角47.0°,偏角:-6.0°)を向き,そ の大きさは鉛直方向に一様で水平方向にのみ変化す るものと仮定した.

4. 磁気異常分布の特徴

極磁力異常図(第4図)と当該地域の地質図(尾 崎ほか,2013)とを比較して,当該地域の磁気異常 分布の特徴について述べる(大熊ほか,2013a,b; 大熊ほか,2013).

山口県の日本海沿岸域に高磁気異常が分布する (a).付近には角島などに後期中新世の玄武岩が分 布するが,一対一に対応するものではない.これは, 玄武岩の磁化方位が現在の地球磁場方向とは異なる ためか,その他の地質構造が原因かもしれない.菊 川断層の北東側には後期白亜紀塩基性岩類(Ga) が露出する地域に対応して,高磁気異常が断層沿い に分布する(b).西側を福知山断層に,東側を田川 一小倉断層で挟まれた地域中の,下関市,北九州市 (c)と香春町付近(d)には,後期白亜紀花崗岩類(Gr₂) に対応して,高磁気異常が分布する.

宗像市付近には高磁気異常が分布する(e).付近には後期白亜紀花崗岩類(Gr₂)が露出するが、磁気異常源としては、南方の三郡山地に露出する超塩基性岩体に相当する岩体が伏在する可能性もある.西山断層系西方の三郡山地に露出する超塩基性岩体に対応して高磁気異常が分布する(f).一方,当該岩体で代表される古生層に対応して高重力異常が分布する(駒澤・大熊,2013)が、後期白亜紀花崗岩体ではそれほど高重力異常を示すわけではなく、必ずしも磁気構造と密度構造が一致するわけではないことを示している.これは逆に言うと、磁気異常と重力異常とを比較検討することによって、当該地域の地質構造を議論できる可能性を示唆している.また、飯塚市付近にNE-SW方向の高磁気異常が分布し(g),付近に分布する後期白亜紀花崗岩類(Gr₃)

に対応する可能性がある.

海の中道に対応してその伸張方向にまた能古島に かけて,高磁気異常が分布する(h).能古島に露出 する後期中新世-更新世の玄武岩が磁気異常源の可 能性がある.背振山地において,大振幅・長波長の 高磁気異常が分布する(i).背振山地に露出する後 期白亜紀花崗岩類(Gr₁)に対応すると考えられる. 背振山地東方の君ケ原地域においても,露出する後 期白亜紀花崗岩類(Gr₁)に対応してほぼ東西方向 に高磁気異常が分布する(j).

5. 磁気異常と岩石磁気との関係

磁気異常と白亜紀花崗岩類の分布が良い一致を示 すことから,詳細な解析範囲(第1図参照)の花崗 岩の磁化率分布(日本列島基盤岩類物性DB (PB-Rock 21), http://riodb02.ibase.aist.go.jp/pb-rock21/ index.html; Okuma *et al.*, 2011)を,シームレス地質 図(脇田ほか, 2009)と活断層分布(活断層研究会, 1991)とに重ねて,第5図に示す.

第5図を参照すると,白亜紀花崗岩類の磁化率は, 一般に旧期花崗岩類が新期花崗岩類よりも高いこと が分かる.また,旧期花崗岩類でも小倉東断層の東 側では,磁化率が弱い.背振山地には旧期と新期の 花崗岩類の双方が分布するが,10³(SI)以上の高 磁化率を示すのは,旧期の花崗岩類である.

詳細な解析範囲の極磁力異常を,第5図と同様に 活断層分布(活断層研究会,1991)と1923年~ 2008年に発生した地震(Mj 2.0以上)の震央分布(気 象庁一元化処理データ)とに重ねて,第6図に示す. 一般に高磁気異常分布域の花崗岩は10³(SI)以上 の高磁化率を示すことが分かる.2005年の福岡県 西方沖地震の震源域の南東延長部は,背振山地と東 方の君ケ原地域の両高磁気異常の鞍部に相当し,広 い意味での基盤構造の境界域の可能性がある.

6. 磁気異常の3次元イメージング解析

背振山地では,顕著な磁気異常が分布することから,当該地域の地下構造を明らかにする目的で,磁 気異常の3次元イメージング解析(Nakatsuka and Okuma, 2009)を行った.その際,磁化方向を当該 地域付近の現在の地球磁場方向(伏角:47.0°,偏 角:-6.0°)と仮定した.これは,白亜紀花崗岩類 のQ比(残留磁化/誘導磁化)の平均値が0.4程度 と小さく,解析に際し誘導磁化のみを考慮しても差 し支えないためである.

磁化強度分布に関し、背振山地を横断する鉛直断 面図を第7図に示す. 1.0A/mを超える高磁化強度 域が背振山地直下に分布し、その底部深度は20km を超える. 地震活動をみると、高磁化強度域では、 Mjが3.0を超えるものは縁辺部に認められるもの のみである.これは、花崗岩体の内部では地震活動 が活発でないことを示している.

7. まとめ

今回,既往の空中磁気データを使用して,対地 1,500 mの滑らかな高度での,福岡沿岸域の空中磁 気図を作成した.その結果,当該地域では,旧期の 後期白亜紀花崗岩類に対応して高磁気異常が分布す ることが分かった.このうち背振山地付近には大振 幅・長波長の顕著な磁気異常が存在し,磁気異常の 3次元イメージングを行ったところ,東西約40km, 厚さ約20kmにおよぶ大規模な高磁性岩体が解析さ れ,背振山地を構成する複合花崗岩体の分布を示す ものと思われる.

文 献

- 地質調査総合センター(2005)日本空中磁気データ ベース.数値地質図, P-6, 産総研地質調査総合 センター.
- 活断層研究会(1991)[新編]日本の活断層-分布 図と資料.437p,東京大学出版会.
- 岸本清行(2000)海陸を合わせた日本周辺のメッシュ 地形データの作成: Japan250m.grd. 地質調査 所研究資料集, no. **353**, 5p. + CD-ROM 2 枚.
- 駒澤正夫・大熊茂雄(2013) 福岡沿岸域20万分の 1重力図(ブーゲー異常)及び説明書. 海陸シー ムレス地質情報集「福岡沿岸域」,数値地質図 S-3,産総研地質調査総合センター.
- Nakatsuka, T. and Okuma, S., (2009) Aeromagnetic 3D subsurface imaging with source volume minimization, Extended abstracts of the 9th SEGJ international symposium, Airborne Studies, 6, CD-ROM.
- 中塚 正・大熊茂雄(2009)日本空中磁気 DB によ る対地 1,500m 平滑面での磁気異常分布データ の編集. 地質調査総合センター研究資料集, no. 516, 24p. + CD-ROM 1 枚, 産総研地質調査 総合センター.
- 中塚 正・大熊茂雄・牧野雅彦・森尻理恵(2005) 日本空中磁気探査データベース.数値地質図, P-6,産総研地質調査総合センター.
- Okuma, S., Kanaya, H. and Nakatsuka, T. (2011) Physical properties and magnetic anomalies of Cretaceous to Paleogene granitic rocks in Japan, IUGG 2011 General Assembly, Melbourne.
- 大熊茂雄・中塚 正・金谷 弘・尾崎正紀(2013a) 福岡沿岸域 20 万分の1陸域地質-空中磁気図. 海陸シームレス地質情報集「福岡沿岸域」,数 値地質図 S-3,産総研地質調査総合センター.
- 大熊茂雄・中塚 正・金谷 弘・尾崎正紀 (2013b)

福岡沿岸域20万分の1基盤地質-空中磁気図. 海陸シームレス地質情報集「福岡沿岸域」,数 値地質図S-3,産総研地質調査総合センター.

- 大熊茂雄・中塚 正・金谷 弘・尾崎正紀・松本 弾・中村洋介・水野清秀(2013)福岡沿岸域 20万分の1活断層-空中磁気図.海陸シーム レス地質情報集「福岡沿岸域」,数値地質図 S-3,産総研地質調査総合センター.
- 尾崎正紀・松本 弾・中村洋介・水野清秀 (2013) 福岡沿岸域 20 万分の1活断層図,海陸シーム レス地質情報集「福岡沿岸域」.数値地質図 S-3,産総研地質調査総合センター.
- 尾崎正紀・水野清秀・中村洋介(2013) 福岡沿岸域 20万分の1地質図及び説明書.海陸シームレ ス地質情報集「福岡沿岸域」,数値地質図 S-3, 産総研地質調査総合センター.
- 脇田浩二・井川敏恵・宝田晋治(編)(2009)20万
 分の1シームレス地質図DVD版,数値地質図
 G-16,産総研地質調査総合センター.

(受付:2012年2月21日,受理2012年10月9日)

第1図 福岡沿岸域20万分の1空中磁気図作成範囲の地形図.

岸本(2000)の地形データを使用して作成.地形陰影を重ねた.コンター間隔:50m.破線のコンターは負値を 示す.実線および破線で囲まれた矩形は,各々福岡沿岸域20万分の1空中磁気図作成範囲と詳細な解析範囲を示 す.

Fig. 1 Topographic map of the area for the 1:200,000 Aeromagnetic Map of the Coastal Zone of Fukuoka (Total Magnetic Intensity). Rectangles bounded by blue solid and dotted lines indicate the area for the 1:200,000 Aeromagnetic Map of the Coastal Zone of Fukuoka (Total Magnetic Intensity) and the detailed study area, respectively. Topographic data (Kisimoto, 2000) was used. Topographic shading was superimposed. Contour interval is 50m. Broken lines indicate negative values.

20km

第2図 福岡沿岸域20万分の1空中磁気図の作成面高度. コンター間隔:50m. 第1図参照.

Fig. 2 Reduction surface of the 1:200,000 Aeromagnetic Map of the Coastal Zone of Fukuoka (Total Magnetic Intensity). Contour interval is 50m. See also Fig. 1.

(nT)

-80

20km

第3図 福岡沿岸域空中磁気図(全磁力異常). コンター間隔:10nT. 第1図参照.

Fig. 3 Aeromagnetic Map of the Coastal Zone of Fukuoka (Total Magnetic Intensity). Contour interval is 10nT. See also Fig. 1.

第4図 福岡沿岸域空中磁気図(極磁力異常).

コンター間隔:10nT. 地形の陰影を重ねた. a ~ j は磁気異常の特徴(本文参照)を示す. 第1図参照. 赤とオレ ンジの実線は各々活断層と推定活断層分布(尾崎ほか,2013)を示す.

Fig. 4 Aeromagnetic Map of the Coastal Zone of Fukuoka (Reduction to the Pole). Contour interval is 10nT. See also Fig. 1. Topographic shading was superimposed. The a – j indicate characteristics of magnetic anomalies (See also the main text). Solid red and orange lines indicate active and assumed active faults, respectively (Ozaki *et al.*, 2013).

- 第5図 詳細解析範囲における白亜紀花崗岩類の磁化率分布. 背景はシームレス地質図(脇田ほか,2009)を一部修正.赤線は活断層分布(活断層研究会,1991)を示す.第1図参照.
- Fig. 5 Magnetic susceptibility distribution map of Cretaceous granitic rocks for the detailed study area. The background is a seamless geologic map (modified from Wakita *et al.* (2009)). Red solid lines show active faults (Research Group for Active Faults of Japan, 1991). Refer to the map location on Fig. 1.

- Fig. 6 Aeromagnetic map of the detailed study area of the Coastal Zone of Fukuoka (Reduction to the Pole).
- Contour interval is 10nT. The light blue line indicates the location of a cross-section of 3D magnetic imaging. Hypocenters (1923-2008) were superimposed as colored circles classified according to their magnitudes on the map. See also Fig. 5.

