ランドストリーマー反射法地震探査による新潟市四ツ郷屋・赤塚地区における 角田・弥彦断層の浅部変形構造調査

Near-surface deformation structure of the Kakuda-Yahiko fault at Yotsu-goya and Akatsuka districts, Niigata City delineated by Land Streamer seismic reflection surveying.

稲崎富士¹•宮地良典²•卜部厚志³•楮原京子⁴

Tomio Inazaki¹, Yoshinori Miyachi², Atsushi Urabe³, Kyoko Kagohara⁴

¹ 地質情報研究部門 / 土木研究所(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation / Public Works Research Institute)

² 地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation)

³新潟大学災害復興科学センター (Niigata University, Research Center for Natural Hazards and Disaster Recovery) ⁴活断層・地震研究センター (AIST, Geological Survey of Japan, Active Fault and Earthquake Research Center)

活動層・地震研究とシック (AISI, Geological Survey of Japan, Active Fault and Earthquake Research Center,

Abstract: We conducted high-resolution shallow seismic reflection surveying using Land Streamer at Yotsu-goya, and Akatsuka districts, Niigata City to image on- and off-fault deformation structure in a faulted zone. Newly assembled P- and S-wave type Land Streamers were adopted for the survey intending to delineate paleoseismic deformation events caused by recent activities of the Kakuda-Yahiko fault. A 2.2 km-long P-wave seismic line was set along the coastal line at Yotsu-goya district. Three seismic lines; a 1.6 km-long P-wave survey line, 1100 m- and 900 m-long lines for S-wave surveying, were set parallel each other at Akatsuka district. As a result, CMP stacked migrated sections clearly profiled off-fault primary faultings as well as the major on-fault flexure structure at the near surface down to 300 m in depth. Correlation of seismic profiles with the drilled cores and logging data obtained at GS_NAK1 and GS_NAK2 sites enabled to distinguish the recent paleoseismic events and to assess their ages and recurrence intervals.

Keywords: Kakuda-Yahiko fault, Active fault, High-resolution seismic reflection survey, Land Streamer, Near-surface

要 旨

角田・弥彦断層の浅部変形構造をイメージングす ることを目的として,新潟市四ツ郷屋および赤塚地 区においてランドストリーマーを用いた高分解能反 射法地震探査を実施した. ランドストリーマーとは 多数の地震計を一体化して容易に牽引・移動ができ るようにした地震探査用の測定ツールである.今回 新たに組み立てたP波およびS波ランドストリー マーを用い,四ツ郷屋地区においては2.2 kmのP波 探査測線を、赤塚地区においては 1.6 km の P 波探査 測線および1100mと900mの2本のS波探査測線 を設定し高分解能反射探査データを取得した.一連 の処理を施して得られた CMP 重合断面には、主断 層部のみならず撓曲変形帯内の副次断層による変形 構造が明瞭に捉えられていた. 副次断層は伏在して おり、地表地形からはそのトレースを追跡すること はできない.

四ツ郷屋地区では測線北東端延長部で1本の,赤 塚地区では探査測線区間内で2本のオールコアボー リングが掘削された.この孔においてサスペンショ ンPS検層,ダウンホールVSP等を実施して浅部の 速度層構造を把握した.さらにコア試料の堆積相解 析および¹⁴C年代測定結果を基に,沖積層に対比さ れる浅部反射面の変形構造を解釈した.その結果, 主断層を含む幅500m程度の撓曲帯の内部のみで 1.4 mm/yr程度の平均上下変位速度を有していると見 積もられること,主断層の変位分配はその6割程度 であることが明らかになった.

以上の結果は,主断層部のみを対象とした調査で は断層の変形速度を過小に見積もる危険性があるこ と,浸食・堆積作用が最近まで継続しているような 沖積平野域では,従来の変動地形学的手法が活断層 の変形構造調査には有効ではないこと,逆に高分解 能反射法地震探査が活断層の浅部変形構造の把握に 有用であることを示している.

1. はじめに

新潟県中央部には信濃川に沿って南北方向に長軸 を有する沖積平野が発達している.長岡市から新潟 市にかけて広がるこの平野の西縁部は、全長 70 km に及ぶ「長岡平野西縁断層帯」(地震調査研究推進本 部,2004)と称される活断層に境されていることが 知られている.同断層帯は通常3つの活動セグメン トに区分され、そのうち陸域最北部のセグメントは、 弥彦活動セグメント(産業技術総合研究所, 2009), 角田山東縁断層(池田ほか,2002),角田・弥彦断層 (仲川, 1985), 越後平野西縁断層(小林, 1996)な どと称されてきた.活動セグメントの区分には、セ グメントごとに特有の活動様式とその範囲が明らか にされている必要がある.またその名称にも出現地 域・様式が的確に示されていることが求められる. 当該セグメントについては、延長約25km,西側上 がりの逆断層であり,反射法地震探査と試錐資料(石 油公団, 1991, 1992)から, 下部更新統の灰爪層に 対して 3000 m 以上の垂直変位を与えていると評価さ れていた (産業技術総合研究所,同上).一方で地表 部には明瞭な変位地形は認められず、同セグメント の伏在位置,変形様式とその空間的差異,海域部へ の連続性については地球科学的知見が乏しかった. 海域部で検出された撓曲変形構造と陸域部でのそれ が連続する場合、当該セグメントの活動規模を大幅 に見直すことが必要となる. そこで, 同セグメント の陸域北縁部に該当する新潟市四ツ郷屋地区および 赤塚地区において、同セグメントの通過位置および 浅部の変形構造を明らかにすることを目的とした高 分解能反射法地震探査を実施した. さらに沖積層を 対象として当該域で実施されていたオールコアボー リングおよび採取コアに対する堆積相解析・稠密年 代測定結果を併せて解析することで、同セグメント の変形の規模と活動履歴の詳細を明らかにすること を試みる. なお本報告では統一的に、当該活動セグ メントを角田・弥彦断層(仲川, 1985)と称するこ ととする.

角田・弥彦断層に対しては、前述した石油公団に よる海域および海陸接合部での大規模反射法地震探 査(SN90-A, SN90-9)のほか、松野尾から西川にか けて(GS_MN_P;加野ほか、1999)、沿岸部(GS_新 潟1;山口ほか、2009)、海陸接合部(GS_新 認2009;楮原ほか、2010)など、これまで大型震源あ るいはダイナマイト震源によるP波反射法地震探査 が実施されてきた(第1図).これに加え電力会社や 大学機関もこの断層を対象とした探査を実施してき ている(石山ほか、2009など).これらの反射法地 震探査は、基本的に対象断層の伏在位置や累積変形 様式を明らかにすることを目的としたものであり、 最近の断層の活動性を明らかにするために必要とさ れる時間的空間的分解能を有していなかった.

近年, 群列ボーリングと採取試料に対する稠密な 年代分析にトレンチ調査を組み合わせた調査手法が 活断層・古地震調査で広く採用されてきている(吉 岡ほか, 2007; Naruhashi, et al., 2008 など). しかし, この手法の適用には多大の調査経費を必要する一方 で、地質構造の空間的な連続性の把握、あるいは不 連続性の推定には限界があった.これに対し高分解 能反射法地震探査、特に伝播速度の小さなS波を用 いた反射法地震探査は、高い空間分解能を有してお り、微細な変形構造のイメージングをも可能にする (たとえば稲崎・中西, 2007 など). そこで角田・弥 彦断層の推定伏在部と交差するように測線を配置し、
 新潟市内の4地区、すなわち四ツ郷屋、赤塚、松野 尾および竹野町において高分解能反射法地震探査を 実施した(第1図).本報告ではこのうち四ツ郷屋地 区および赤塚地区で実施した探査結果を,探査測線 近傍で掘削された3本のオールコアボーリング孔 (GS NIK, GS NAK1, GS NAK2) における検層結果 およびコア堆積相解析結果と対比して解釈する.

2. 高分解能反射法地震探查

2.1 高分解能反射法地震探査の概要

反射法地震探査は、もともと資源探査手法として 地下数km程度の深い深度領域を対象として発達し た探査手法であるが、天然資源に乏しい我が国では むしろ防災調査で多用されており、地方自治体等が 進めてきた活断層調査の主要な調査手法となってい る.反射法地震探査のうち、深度数100mまでを対 象とするものを特に浅層反射法地震探査、深度数 10mまでを対象とするものを極浅層反射法地震探査 と称することがある(加野・稲崎、1998).また従来 の反射法探査では起振点/受振点間隔は10m~25m 程度に設定されるのに対し、この間隔を2.5m~数 10cmと狭小に設定し、高い空間分解能を保障する 手法を特に高分解能反射法地震探査と称する.

反射法地震探査では,反射波信号を強めるために 共通中点 (CMP) 重合法という特徴的な現場計測・ データ処理技法が採用される.そして CMP 重合デー タを効率的に取得するために、あらかじめ多数の地 震計を地表に展開しておき,まずある起振点で震源 を操作して信号を記録する(共通起振点記録).そし て震源を一定間隔移動させて測定を繰り返す.ここ で受振点間隔を小さくすれば、反射点の密度が上が り水平方向の空間分解能が向上するので詳細な構造 解析が可能となる.また起振点間隔を密にすると, CMP 重合数が大きくなり反射波の S/N 比を向上させ ることができる.従来の反射法地震探査ではCMP 重合数は最低でも24,通常で60~120程度に設定さ れることが多かった.しかし受振点間隔および起振 点間隔を密にすればするほど,単位区間あたりの作 業密度も大きくなり,結果として探査効率が低下す る. そこで,対象とする構造が有すると想定される 不均質性のオーダー,あるいは検出すべき構造のス ケールと現地での作業性を考慮して,受振点間隔と 起振点間隔が設定される.なお深度方向の空間分解 能は反射波信号の波長に依存する.地盤の速度は変 えられないが,周波数を高くすれば波長が短くなる ので分解能を向上させることができる.

2.2 ランドストリーマーツール

高分解能反射法地震探査の現地測定を効率的に実 施するために、ランドストリーマー(稲崎、1992; Inazaki, 2004) と称する探査ツールを使用した. ラン ドストリーマーとは、特に舗装路上での測定を目的 とし、音波探査と同様に多数の地震計を一体化して 容易に牽引・移動ができるようにした地震探査用の 測定ツールである(第2図).従来の地震探査では, 測線上に展開する地震計は、スパイクを地中に突き 刺して地面と固着させるか、あるいは舗装路上では 三脚を介して地面とカップリングさせていた. これ に対しランドストリーマーでは、地震計は金属製の ベースプレートを介して舗装路面と面的にカップリ ングさせている(第3図).このような非固定方式の カップリングでも良好な波形記録が得られることが 知られている (Inazaki, 1999). また固着部がないこ とから容易に移動させることができるという特長を 有している. さらに舗装路での探査には、表層風化 層の影響を受けにくいという特長もある. 最も不均 質な表層部を削剥し、均質な路盤材および舗装材料 で置き換えて道路が敷設されているからである.

牽引部材には当初重量物懸架用布ベルトを使用していたが、本探査では軽量化を図ることを目的として合成繊維ロープあるいはステンレスワイヤーロープを採用した.この牽引部材に、P波探査用ランドストリーマーでは1m間隔で、S波探査用ランドストリーマーでは50 cm間隔に地震計あるいは地震計を内蔵したユニットをベースプレートに装着して配列する.本探査で使用したランドストリーマーツールの仕様を第1表にまとめた.

2.3 四ツ郷屋地区における高分解能反射法地震探査

新潟市西区新潟市西区四ツ郷屋地区において海岸 線に並行に走る国道402号線沿いに約2.2 kmの測線 を設定し、P波ランドストリーマーによる高分解能 反射法地震探査を実施した(稲崎ほか,2010).この 地区では山口ほか(2009)によって測線長約10 km のバイブレータ震源によるP波反射法地震探査が実 施され(GS_新潟1測線;第1図),部分的ではある が深度700m程度までの反射面が捉えられていた. そこで、同探査によって推定された断層の通過位置 と交差するように短い測線を設定し、浅部を対象と した高分解能反射法地震探査を実施した.測線名を PW/GS_NYG_PLS測線とし、その展開位置を第4図 に示す. なお同図に示した測線距離程は GS_新潟1 測線と合致させている. 測線の南西側約1kmの区間 の探査は, 2009年3月に土木研究所の調査研究とし て実施された. また北西側約1kmの区間は,沿岸域 の地質・活断層調査プロジェクトの一環として 2009 年7月に実施した. 解析処理には両者のデータを併 せて使用している.

2.3.1 測定諸元および使用機器類

四ツ郷屋地区に設定した PW/GS NYG PLS 測線の 測定諸元および使用した機器類を第2表に掲げた. 測線長は全体で 2.2 km, 測定には 96 ch の P 波型ラ ンドストリーマーを使用した. このうち 2009 年 3 月 期の探査には、12mm径の合成繊維製のロープを牽 引部材とし、1m間隔にシングル地震計を装着した ランドストリーマー(LS 100P2)を使用した(第5 図 (a)). また 2009 年 7 月期の探査には、3 mm 径の ステンレスワイヤーロープを牽引部材とし、地震計 エレメントを4個内蔵した函型の地震計ユニットを 1m間隔で懸架したランドストリーマー (LS 100P3) を使用した(第5図(b)). 震源にはドロップヒッタ (日本地工株式会社製;第5図(c))を使用し, 起振 点間隔を2mに設定して発震作業を繰り返した.起 振点の移動時にはランドストリーマーも2m移動さ せている. 各起振点での垂直重合数は通行車両や測 線近傍の家屋からの振動ノイズの強弱の状況に応じ て2~8回とした.また卓越する表面波群と分離させ るため,最少オフセットを 50 m に設定した.

2.3.2 探査測線および周辺地形

探査測線は、新潟市西区四ツ郷屋から内野上新町 を経て同区五十嵐三の町へ続く、国道402号道路に 設置した.道路の海側に歩道が配置されており、こ の歩道部にランドストリーマーツールおよび振源類 を展開した.測線設定区間では、当該道路は海岸か ら内陸側に約200mの位置を海岸線とほぼ平行に走 る.部分的に屈曲しているもののその角度は小さく、 探査測線を直線で近似可能である.したがって探査 測線とCMP 重合測線は基本的に一致する.ただし 道路が海岸線と斜交する砂丘列と交差しており、測 線区間でも3列の砂丘間凹地と4列の砂丘が分布す ることから、標高は7.8m~12.7m間で波状に起伏す る.

2.3.3 探査データ処理

実質6日間の現地探査で取得したデータは,合計 1248ファイル,約1.8GBに達した.このデータを Windows上で動作する反射法処理ソフトウエア VISTA for Windows (GEDCO 社製)を用いてデータ 処理した.

データ処理の流れを第6図に、また各処理の概要 を以下に記す.前述のように反射測線はほぼ直線で あったので、測線の起点と終点の座標をつなぐ線分 をCMP 重合測線とし、この測線に沿って共通反射 点の編集を行なった.CMP の間隔は1.0 m とした.

まず前処理としてトレース編集,同一起振点重合 (ダイバーシティ重合)等を施し,次に測量作業によっ て求められた各受振点および起振点の座標データを 入力し,ジオメトリを定義する.その後,起振点受 振点応答補正(Surface consistent deconvolution),標 高補正,幾何減衰補正,多重反射除去(次節で詳述 する),バンドパスフィルタ(帯域通過フィルタ), 予測型デコンボリューション, FK フィルタ等の処理 を施し、反射イベントの分離・パルス化をはかった. 速度解析は,定速度重合法と定速度走査センブラン ス計算法を用い, 50CMP (50 m) 毎に実施した.速 度解析点数は43点である。得られた重合速度構造に 対してさらに空間的スムージングフィルタをかけ、1 次重合速度構造とした. さらにこの速度構造を88% ~115%の間を3%間隔で変化させた値を用いて重合 前マイグレーション処理を施し、対応する時間断面 を作成した.この時間断面パネル上で反射面がもっ ともよく再現される速度を抽出し,最終的な重合速 度構造を求めた. この解析を経て求めた重合速度構 造を用いて NMO 補正, CMP 重合処理を施し時間断 面を作成した.また NMO 補正後の CMP ギャザに対 し、特定の反射イベントを含む時間ウィンドウを設 定し、その領域内での CMP 重合の効果が最大とな るような補正項を最小二乗反復計算法によって求め る,パワー最大化自動静補正法(スタックパワー計 算法)を用い、残差静補正量を計算した. NMO 補 正および残差静補正を数次繰り返した後, CMP 重合 を施して最終的な重合後時間断面を得た. この重合 後時間断面に対して、反射面の連続性を強調する FX 予測フィルタ処理を施し、さらに周波数帯域フィル タ処理等を加えた.また重合前時間マイグレーショ ン処理断面にFX 深度マイグレーション処理を加え、 深度断面を作成した.深度変換には上述した重合速 度構造データを用いている.

2.3.4 探査結果

第7図に前処理後のショット記録例を示す. 起振 点 5010 m, 5372 m の記録には初動および浅部の反射 イベントが明瞭に認められる.一方起振点 5744 mの 記録は初動イベントすら明瞭ではなく、逆走時の雑 音が卓越している. 測線距離 5850 m 付近に位置する 生ごみ処理工場および廃プラスチック処理工場の稼 働時の振動雑音が、この強振幅雑音の発生源と思わ れた. そこで第2次の探査では、これらの工場が休 工する日曜日に当該区間で再測定を実施した.しか し残念ながら、休日中も一部の機械類が自動運転し ており、その振動雑音の影響で良好な記録を得るこ とはできなかった(起振点 5816 m). 測線北東側の 起振点 6210 m, 6760 m のショット記録では、初動は ほぼ明瞭で、往復走時 300 ms 程度まで反射イベント が捉えられている.特徴的であるのは,強振幅の浅 部反射イベントに後続し、ほぼそれと平行する多重 反射と思われるイベントがほぼ全測線区間で認めら

れることである. そこで反射法処理ソフトウエアに 組み込まれているモジュール (SRME: Surface-Related Multiple Elimination)を用い,多重反射除去 を試みた. 起振点 6760 m のショット記録に対する, 本処理結果を第8図(b)に示す. 原記録(同図(a)) で往復走時 200 ms 付近に認められる多重反射の振幅 が,本処理によって低減されていることがわかる. ただし,往復走時 280 ms 付近に出現する第2次多重 反射波に対しては,本処理の効果は小さい.

四ツ郷屋 PW/GS NYG PLS 測線の重合時間断面を 第9図に示す.時間断面では,往復走時100ms付近 によく連続する強い反射面が見出される. 測線の北 東側では往復走時350ms程度まで反射イベントが認 められるが、南西側は再現性が良好でなく、200ms 程度までしか反射面を追跡することができない.し かし、測線距離 6300 m から 6600 m にかけて、反射 面が屈曲している構造が捉えられている. 断層に伴 う撓曲・屈曲構造であると解釈することができる. 加野ほか(2010)は、石油公団が実施した反射法地 震探査データの再解析結果を示している. このうち, 本測線と並行する海域測線 SN90-A の時間断面の一 部と本測線の時間断面とを対比した(第10図). SN90-A 時間断面には、往復走時 100 ms 付近にフラッ トな反射面が出現し、その下位に1km程度の幅を有 する撓曲帯が捉えられている.この撓曲帯の変形構 造は同一スケールで表示した PW/GS NYG PLS 測線 時間断面に認められる前述の屈曲構造と類似してお り、この構造が断層変形構造であるとの解釈を強く 支持する.

第11図は、同測線の深度断面に対し、連続性のよ い反射イベント群をトレースし解釈を加えたもので ある.また同図には、測線北東延長部に位置する GS NIK 孔の簡易柱状図(宮地ほか, 2010)を合わせ て示した.以下,深度断面図に認められる特徴的な 構造について概述する.まず深さ 50 m 付近に認めら れるフラットで連続性の良好な強い反射面は、負の 極性を有しており, GS NIK 孔の深度 50.4 m 付近に 出現する細粒堆積物相の層準に対比することができ る.この反射面に対して下位の反射イベントがトッ プラップ,あるいはトランケーションしているよう に見えることから,一時的な無堆積ないし侵食イベ ントの存在が示唆される. なお同様の構造は四ツ郷 屋沖での音波探査断面にも認められており、海陸で 共通する構造である可能性がある. なおこの強振幅 の反射イベントは、陸域での高分解能 P 波反射法探 査に共通して出現することも特徴的である. その出 現深度は浅部ガス胚胎層のそれと調和的であり、堆 積構造ではなく、音響的境界である可能性も否定で きない.反射断面と浅部地盤構造との詳細な対比検 討が望まれる.

GS_NIK 孔では深度 150.3 m に沖積層の基底が比 定されている.下位の上部更新統は粗粒砂層を主体

とした固結度の高い河川成堆積物からなり(宮地ほ か,同上),この境界は正の極性を有する反射面とし てイメージングされることが期待された. 深度断面 では右端で深さ約150m付近に対応する反射イベン トを見出すことができる.この反射面は緩く北東側 に傾斜し、断面内での比高は最大で70mに達する。 新潟平野西縁断層主部に比定される撓曲変形帯(測 線距離 6300~6600 m) での相対変位は 20~30 m 程 度と見積もることができる.井上ほか(2011,本報告) は、四ツ郷屋沖約8kmの音波探査測線(E-16)に認 められる活構造による四ツ郷屋沖層中部層(約 10.5 ky BP)の相対変位量を 25 m~30 m と見積もっ ている.変形帯の幅も400m程度であり、本PW/ GS NYG PLS 測線断面に見出される変形帯の構造と それに対する上述の解釈と極めて調和的である、撓 曲変形帯の下盤側(測線距離 6600~6900 m)では, 見かけで北東側に傾斜する反射面に対して、部分的 にオンラップする反射面が認められる. 断層運動に よる下盤側の相対的な沈降・海水準の上昇によって 形成された構造であるとの解釈が可能であり、四ツ 郷屋沖の音波探査断面との対比によって、オンラッ プ構造の形成時期を詳細に推定できる可能性がある.

2.4 赤塚地区における高分解能反射法地震探査

新潟市西区赤塚地区において角田・弥彦断層の伏 在推定部と交差するように3本の測線を設定し,高 分解能反射法地震探査を実施した.測線位置とオー ルコアボーリング孔掘削位置を第12図に示す.なお 赤塚地区では卜部ほか(2007)によって,予察的な 高分解能反射法地震探査が実施されていた.同図に はその測線(NU_AK_LS1, NU_AK_LS2)も併せて 示してある.

2.4.1 周辺地形および探査測線

探査測線の大部分の区間は、赤塚集落の東側に広 がる低平地上に位置する.この低平地は、標高約3.5 m で平坦であり、表層部には河川成の砂質堆積物が分 布することから、旧信濃川の氾濫原ないし旧河道に 比定することができる.赤塚集落は新砂丘 I (縄文 前~中期)ないし新砂丘 II (縄文後~晩期)上に立 地している(ト部ほか、2006).この砂丘地形は東側 に徐々に高度を下げ、その末端部は低平地の地下に 埋没している(ト部ほか、同上).赤塚集落を載せる 砂丘部と低平地との地形境界は明瞭で西側に膨らん だ弧状を呈している.藤蔵新田が位置する旧蛇行河 道地形と調和的であり、比較的新しい時代の側刻地 形の痕跡であると解釈することが可能である.

赤塚地区に設定した3本の探査測線のうち南側の 測線(GS_AK_PLS)は、県道46号新潟大外環状線 の南側車道舗装路面部に設置した.また北側測線 (GS_AK_SLS1)および中間測線(GS_AK_SLS2)は、 1948年以降に整備された圃場内を走る舗装された農 道上に設置した.この中間測線の測線区間内におい て2本のオールコアボーリング(GS_NAK1: 測線距 離432m; GS_NAK2: 測線距離733m)が掘削され, 詳細なコア試料分析が実施された.また掘削孔にお いて各種検層を実施した.これらの結果は次節で詳 述する.

2.4.2 測定諸元および使用機器類

赤塚地区で実施した高分解能反射法地震探査の測 定諸元および使用した機器類を第3表に概括する. GS AK PLS 測線は測線長 1600 m, 測定には 144 ch 同時受振できるP波型ランドストリーマー (LS 100P3: 第1表)を使用した. 同ツールには, 固有周波数 40 Hz の地震計エレメントを4 個内蔵し た地震計ユニットが、1m間隔で144 チャンネル配 列されている. 震源にはミニ油圧インパクター JMS-Mini65(株式会社地球科学総合研究所製:第13図(a)) を使用し、起振点間隔を2mに設定して発震作業を 繰り返した. 起振点の移動時にはランドストリーマー も2m移動させる.ただし通行量の多い赤塚集落内 の県道2号新潟寺泊線や集落内道路交差部では、ラ ンドストリーマーを展開することが車両の安全通行 の妨げになる可能性があったことから固定展開とし, 震源のみを移動させた. 各起振点での垂直重合数は 通行車両の多寡や測線近傍の家屋からの振動ノイズ, 特にネギの皮むき作業に伴うコンプレッサーの稼動 ノイズの強弱の状況に応じて 2~8回とした.現地で の測定作業は2009年11月2日~6日にかけて実施し、 総起振点数は795 に及ぶ. データの収録はDAS-1 (OYO Geospace 社製)を用いた.

GS AK SLS1 測線は測線長 1135 m, 測定には 120 ch 同時受振可能な S 波型ランドストリーマー (LS 50S: 第1表)を使用した.本測線での探査に 使用したツールは、P 波型ランドストリーマーツー ルと同様に牽引部材として2本のステンレスワイ ヤーロープを使用し、50 cm 間隔で 120 個の S 波用 地震計ユニットが配置されている. 各地震計ユニッ トには固有周波数14Hzの水平動エレメントが2個 組み込まれている. 震源にはエアハンマーを組み込 んだ窒素ガス駆動S波震源(サンコーコンサルタン ト社製:第13図(b))を使用し、起振点間隔を1m に設定してランドストリーマーと震源を1m毎に移 動して測定を繰り返した. 各起振点での垂直重合数 は、風雨によるノイズの程度に応じて 2~16 回とし た. 現地での測定作業は二次にわたって実施した. 第一次測定の期間は 2009 年 11 月 11 日~14 日にか けてであった. 測定期間中はほぼ全日降雨と強風に 見舞われたが、ランドストリーマーをゴムマットで 覆い,風雨の影響を極力低減させるよう工夫した(第 13 図 (c)). これにより雨天下においても全日の測 定作業が可能となった. 第二次測定は2010年7月8 日に実施し、測線西側延長約240mの区間を補足し た. 測定当日は好天に恵まれたが、測線区間内で葉 たばこ集荷施設が操業しており, 搬入車両の出入り

および乾燥機からの振動雑音の影響を受けた.これ を避けるため待機時間を増やすとともに垂直重合数 を16にまで増加させた.

GS_AK_SLS2 測線は測線長880 m, 測定には 120 ch 同時受振可能なS波型ランドストリーマー (LS_50S)を使用した.震源にはエアハンマー震源 を使用し,起振点間隔を1mに設定してランドスト リーマーと震源を1m毎に移動して測定を繰り返し た.各起振点での垂直重合数は4ないし8回とした. 現地での測定作業は2010年7月5日~9日にかけて 実施した.測定期間中はおおむね好天であったが, 測線近傍の水田への灌がいが数箇所で断続的に行な われており,給水管からの給水が無視できない程度 の雑音となって取得データ品質を劣化させた.そこ で測線西側では反対側起振逆走時データを2m間隔 で取得し,重合数の増大によるS/Nの向上をはかっ た.

2.4.3 探査データ処理

実質 13 日間の現地探査で取得したデータは,合計 3133 ファイル,約 4GB に達した.このデータを Windows 上で動作する反射法処理ソフトウエア VISTA for Windows (GEDCO 社製)を用いて処理した.

データ処理の流れは基本的に四ツ郷屋測線のそれ と同一である.反射測線を直線とみなし測線の起点 と終点の座標をつなぐ線分を CMP 重合測線とし, この測線に沿って共通反射点の編集を行なった. CMPの間隔はGS AK PLS 測線では 1.0 m に, GS AK SLS1およびGS AK SLS2測線では0.5 mとした. 各受振点および起振点の座標データを入力し、ジオ メトリを定義した反射測定データに対して, 前処理 を施し反射イベントの分離・パルス化をはかった. 速度解析は 50CMP (50 m ないし 25 m) 毎に実施した. 速度解析点数は, GS AK PLS 測線では 31 点, GS AK SLS1 測線では 37 点, GS AK SLS2 測線では 35 点である.一連の処理を経て決定された最終的な重 合速度構造を用いて時間断面を作成するとともに, 重合前時間マイグレーション処理を施しマイグレー ション時間断面を作成した.深度変換には,重合速 度構造データに対して後述する GS NAK1 孔および GS NAK2 孔での速度検層によって得られた表層部 の実測速度分布データを用いて補正を施した値を使 用した.

2.4.4 解析結果

GS_AK_PLS 測線の重合時間断面を第 14 図 (a) に, また解釈を加えた深度断面を第 14 図 (b) に示す.つ ぎに GS_AK_SLS1 測線と GS_AK_SLS2 測線の重合 時間断面をそれぞれ第 15 図 (a), (b) に,それらの 深度変換断面図を第 16 図 (a), (b) に示す.以下, 各断面に認められる特徴的な構造について記す.

P波重合時間断面(第14図(a))には,往復走時 60 msec付近に連続性の良い強振幅の反射面が認めら れる.NU AK L1 測線の時間断面にもほぼ同じ走時

に強い反射面が出現する.前述のようにPW/GS NYG PLS 測線時間断面(第9図)にも往復走時 100 msec 付近に連続する強い反射面が出現すること から、この地域に共通する特徴的な反射イベントで あるということができる.この反射面は、測線距離 850 m から 1000 m の間で下方に撓んでいる. 第12 図に示したように、この変形構造の出現位置は砂丘 部と低平地との地形境界、旧河道の交差部に一致し ている. 最表層に軟弱で P 波速度の小さい河道充填 堆積物が分布しているために水平な反射面が時間断 面では見かけ上撓んで再現されている可能性がある. 最表層約20mの重合速度を重合速度層構造モデルで 採用した 1.25 km/s に対して 0.8 km/s と仮定すると, この区間の反射面の出現走時は 20 msec 程度上方に 持ち上がり、当該の反射面はほぼ水平になる(第14 図(b)). しかしこの区間では下位の反射面群もその 傾斜構造が他の区間とは様相を異にしており、この 処理によってもそれらを連続させることは不可能で ある.特に、下位の反射面ほどその傾斜を増してい ることから、この部分に認められる反射面の傾斜・ 分断構造は断層による変形構造と解釈するほうが妥 当である. すなわち, この区間が角田・弥彦断層の 主断層通過部と解釈することが可能である.

P 波深度断面(第14図(b))には、数枚の反射イ ベントとそれらを変形させている断層および変形集 中帯が解釈されている.まず測線距離 800~1200 m にかけての断層変形帯は,解釈した反射イベントに 変位を与えており,変位量と傾斜が下位イベントほ ど大きくなる累積変形が捉えられている. また変形 帯の両端に逆センス(西落ち)の断層が集中してい るように見える、測線距離450m付近にも累積変位 を示す小規模な変形帯を解釈することができる. 逆 断層の前縁下盤側に特徴的に発達する副次断層 (Frontal Faults) であり、主断層の活動と連動して、 あるいは独立に活動したテクトニックな変形構造で ある可能性が高い.新潟平野西縁断層の主部と解釈 した変形帯は、青色でマーキングした深さ40m付近 の反射イベントにも数m程度の変形を与えている. 下盤側で深さ110m付近に出現する反射イベントは 上盤側では約75mまでもち上がり、その上下変位は 約35mと見積もられる.後述するGS NAK1 孔のコ ア記載から、この反射面を沖積層基底境界、あるい は更新統最上部の粗粒砂層上面に比定することがで きる. 下盤側で深さ170m付近に認められる反射イ ベントは上盤側では100m程度まで出現深度が減じ, 比高は約70mに達する. 測線距離150m付近でも反 射イベント群が変形しているようにも見える.この 部分にも前縁副断層が存在している可能性があるが, 測線端に近く明瞭ではない. 前縁断層の有無を確認 するには、測線を東側に延長することが望まれる.

S 波重合時間断面(第15図(a),(b))には,往復 走時 300 msec 以深に連続性が良好で平行する反射面 が多数認められる.一方 300 msec 以浅の反射面の連 続性は良好とは言えない. 残差静補正および重合速 度の適正化によって浅部反射面のイメージングを向 上できる可能性がある. 測線区間内のある範囲内で 反射イベントの多くが屈曲しているのが特徴的であ る. 特に両測線断面において測線距離 900 m 付近で は反射面の屈曲が顕著で、またその東側、GS AK SLS1 測線断面では 450 m 付近, GS AK SLS2 測線 断面では200m付近にも小規模な変形帯を解釈する ことが可能である.いずれの変形帯においても、下 位の反射イベントほど変位量が大きくなる傾向が共 通して認められることから,これらの変形帯は断続 的な断層運動によって形成された初成的な変形構造 であると解釈する.測線距離900m付近の変形帯は GS AK PLS 測線で新潟平野西縁断層の主断層部と 解釈した変形帯の北側延長部に位置し、いずれの測 線区間においても同様に主断層変形部を捉えたもの と解釈することが可能である.

第16図 (a), (b) は、後述する GS NAK1 孔およ びGS NAK2 孔で実施した速度検層データに基づい て速度解析で求めた速度構造モデルを修正し、それ を用いて深度変換して得られた重合深度断面である. 同図は、適用した高分解能S波ランドストリーマー 反射法地震探査によって,深度約160m程度までの 浅部地質構造が詳細にイメージングされていること が示されている.同断面からは主断層変形帯および 前縁断層帯で変形した多数の反射イベントを追跡す ることが可能であり、断層による変位量を容易に見 積もることができる. さらに特定の層準の反射面の 年代が推定できれば,探査対象である新潟平野西縁 断層の活動度を評価することも可能となる. そこで GS AK SLS2 測線区間内で掘削された2本のオール コアボーリング孔のコア試料分析結果および各種検 層結果を以下に示し, 高分解能反射法探査断面との 対比を試みる.

3. オールコアボーリング孔における孔内検層

第1図に示すように、新潟平野沿岸域の沖積層の 堆積相および変形史の解明を目的として多地点で オールコアボーリングが実施された.その掘削孔を 利用し、沖積層の物性情報の取得を目的として孔内 検層を実施した.適用した検層手法と使用機器類を 第4表に掲げるとともに、その概要を以下に記す. 孔内検層は新潟平野沿岸域で掘削されたすべての ボーリング孔で実施したが、そのうち赤塚地区の2 孔の結果を次に示す.

3.1 孔内検層手法概要

沖積層の物性構造,特に P 波および S 波速度構造 を把握し,高分解能反射法地震探査データの処理解 析に活用するとともに,沖積層の対比に利用するこ とを目的として各種物理検層を実施した.

サスペンション PS 検層(狐崎, 1975)は、未固 結堆積層の P 波のみならず S 波速度を測定可能な、 最も簡便かつ高精度の速度検層手法の一つである. 検層プローブに組み込まれたソレノイド震源をダイ ポール発振、あるいはモノポール発振させることで、 S 波、P 波を発振させ、同じプローブに1m間隔で 配置された2連の受振器で波形を測定し、その走時 差から区間速度を求める.プローブを孔壁に圧着さ せる必要がないことから作業性に優れているが、ケー シング部分では原理的に地層の速度を求めることが できないため、伐管、再測定を必要とする.

ダウンホール PS 検層は、地表で発振させた振動 を孔内に降下させたプローブで測定する手法である. 今回の検層では、1 m 間隔で 26 深度にセンサを配置 したハイドロフォンアレイプローブ (DH-5:ITI 社製) を用いて主として P 波相を、また孔壁にプローブを 圧着させて測定するボアホールピック 3315 (応用地 質社製)を用いて浅部の S 波相を測定した. コンビ ネーション検層は、多数のセンサを組み込んだプロー ブを孔内に挿入し、同時に多種類の物性情報を取得 するものである. 今回の検層では、比抵抗、帯磁率、 地磁気(全磁力,水平2成分,鉛直)、温度、および 傾斜角を同時測定可能なコンビネーションプローブ (BMP-04:IFG 社製)を使用した. 孔径変化を測定す るキャリパ検層には、3 アームのプローブ (B3C-01: IFG 社製)を用いた.

3.2 GS_NAK1 孔における孔内検層

3.2.1 GS_NAK1 孔およびコア層相概要

角田・弥彦断層の活動によって沖積層がどの程度 変形を受けているかを明らかにするために、断層帯 の上盤側(GS SGT1; 第1図)と下盤側(GS KNM1;第1図)で層序ボーリングが実施されてい た(宮地ほか,2010). さらにそれらと対比すること によって変形帯の詳細な変形構造を明らかにするこ とを目的として、断層変形帯内部あるいは極近傍に おいて2本のコアボーリング調査が実施された(GS) NAK1; GS NAK2 孔). ボーリング地点を第1図, 第12図に示す. GS NAK1 孔の掘削地点 (JGD2000: N37°48'58.9", E138°53'31.4", 標高+3.27m, 掘進長 115m)は、高分解能反射法探査測線GS AK SLS1 の測線距離では432mに該当する.測線とのオフセッ トは約1mである.この地点では新潟大学によって 深さ65mまでのコアボーリングが実施されていた (卜部ほか, 2006) ことから, GS NAK1 孔は深さ 50m以浅についてはノンコアで掘進された.以下深 さ50m以浅の部分については卜部ほか(2006)にし たがい、それ以深は宮地ほか(2010)にしたがって 層相を概述する.またコア記載柱状図を第17図左端 に示す.

深さ 0.00~1.00 m: 道路盛土.

深さ1.00~11.00m:シルトと細粒砂の薄層互層あ るいはシルト層からなる氾濫原堆積物,および極粗 粒砂~細礫層ないし中礫層からなる河川流路堆積物.

深さ11.00~14.56m:シルトの薄層を挟在する細 粒~中粒砂層を主体とする砂質ラグーン堆積物.

深さ14.56~20.84m: 淘汰のよい細粒~中粒砂層 からなる後浜~下部外浜堆積物.

深さ20.84~29.00m:細粒~中粒砂層からなり, シルト,粘土薄層を挟在する砂質ラグーン堆積物.

深さ 29.00~36.76 m: 淘汰のよい細粒~中粒砂層 からなる前浜~下部外浜堆積物.

深さ 36.76~50.74 m: 細粒砂層, ないし砂質シル ト層と泥質細粒砂層の互層を主体とするエスチュア リー堆積物.

深さ 50.74~83.49 m: 淘汰のよい細粒砂層および シルトを主体とするデルタフロントないし塩水湿地 堆積物.

深さ 83.49~101.64 m: 淘汰のよい細粒砂層とシル トとの互層を主体とするデルタプレーンないし氾濫 原堆積物.

深さ101.64~105.19m:淘汰の不良な粗粒砂を主体とする河川流路堆積物.

深さ105.19~115.00m: 極粗粒砂~中礫層からな る上部更新統堆積物.

以上の堆積相解析および年代測定データから,沖 積層の基底は105.19mに比定された.

3.2.2 GS_NAK1 孔検層結果

サスペンション PS 検層によって求められた GS_ NAK1 孔の S 波および P 波速度構造と孔径, コンビ ネーション検層で得られた帯磁率,全磁力,見かけ 比抵抗,孔内温度プロファイルを並べて第17 図に示 す.一部のプロファイルが特定の深度で不連続にな るのは,ケーシング伐管前後による孔内環境の変化 の影響である.

S波速度プロファイルは、基本的に深くなるほど 速度値が大きくなるという一般的な傾向が表れてい る. また一般的には砂礫層で大きく、シルト・粘土 層では小さくなる傾向があり、本孔でも深さ20m, 36 m, 42 m, 54 m, 58 m, 81 m, 95 m および 105 m に速度境界が認められる. 深さ26m付近の速度低下 はケーシング尻の拡孔乱れによるものと考えられる. 深さ109m以深の更新統ではVsが400m/sを超える. P波速度は深さ10m以深では、ほぼ1.6km/sで一様 である.深さ37mに速度境界があり、上下位の層相 は砂相で類似していても物性が異なり、堆積環境の 変化あるいは堆積間隙の存在を示唆する.砂泥互層 部で P 波速度が小さな値を示す部分があるが、キャ リパ検層での拡孔部と対応しており、真の物性値で はない可能性が高い.深さ108m以深の部分はS波 速度と同様に明らかに大きな値を示しており、物性 的に上位とは区別されることがわかる.

帯磁率は一般には重鉱物が濃集する砂層で大きく,

泥質層では小さな値を示すが、本孔のプロファイル では層相による一般的な傾向は不明瞭である.ただ し深さ 22~25 m 付近, 53 m, および 75 m 付近では サージが認められ, 全磁力プロファイルにも同深度 に対応する変動が認められることから、 重鉱物の濃 集層に対比することが可能である. 比抵抗値は一般 に泥質層で低く,砂礫層で高い値を示す.本孔のプ ロファイルにおいても,砂泥境界部で同様の傾向が 認められる. 特に 42 m 付近, および 58 m 付近にこ の特徴が表れている. 温度検層プロファイルは孔内 洗浄直後の測定値であり基本的に地層温度と不平衡 状態の値である. それでも深くなるほど温度が上昇 する一般的傾向と, 地表部でも上昇する特徴的な傾 向が表れている. また 21 m 付近, および 52 m 付近 に微小な温度跳躍が認められる. 透水層の存在を示 唆しているものと解釈することができる.

第18図に、ダウンホール PS 検層のペーストアッ プ波形とサスペンションS波速度プロファイルを柱 状図とともに示す.ハイドロフォンアレイによるP 波記録には、上部25mまでのケーシング部を除いて 初動が鮮明に捉えられている. 初動片走時は, 深度 110mの更新統砂礫層上面で77.5msec(往復走時 155 msec), 105 m の沖積層基底部は 75.0 msec, 81 m の砂層上面で 57.5msec, 55m の泥層-砂層境界が 40.0 msec, 46 m の 泥 層 一 砂 層 境 界 で 34.5 msec, 37 m の砂層-シルト層境界部は25.5 msec に対応す る.これらの境界は速度コントラストが大きく、P 波反射法探査断面上に反射面として出現することが 期待された.ただし同図ではこれらの境界からの上 向反射波は明瞭ではない.一方,P波初動の所どこ ろから、PS 変換下向波が生起していることが特徴的 である.このような変換波は,一般的に孔径の変化 部で生起されることが知られている.実際、観測さ れた PS 変換下向波,上向波の多くはキャリパ検層 で測定された孔径プロファイルの変化部から生起し ているように見える.

第 18 図中央には, 地表から深さ 35 m までボアホー ルピックを用いて収録したダウンホールS波記録波 形とそれから読み取った初動走時が描かれている. またこれに重ねて,深さ22mから89m間でハイド ロフォンアレイで観測した板叩きS波発振信号を記 録した波形を表示してある。ハイドロフォンアレイ 記録に認められる顕著な後続波群は、ダウンホール S波記録波形と完全に重なることから、地盤を伝播 した下向S波相を記録したものと解することができ る. この走時は、サスペンション検層で決定された 1m 毎の区間走時を積算して作成した累積S波走時 曲線(同図右)とも極めて調和的である. S 波下向 波の初動片走時は,110mの更新統砂礫層で 453 msec (往復走時 906 msec), 105 m の沖積層基底 部で430 msec, 81 m の砂層上面は356 msec, 55 m の泥層-砂層境界で271 msec, 46 m の泥層-砂層境 界で237 msec, 37 mの砂層 - シルト層境界部は 201 msec, 20 mの砂層内境界は130 msec に,そして 深さ14 mが片走時で100 msec に対応し,これらの 2 倍値の往復走時にそれぞれの層境界に対応する反 射面が出現することが期待される.またハイドロフォ ンアレイプローブで観測したS波下向波からは,深 さ45 m,55 m,および66 m付近から顕著な上向波 が生起している.前の2 つの出現深度は,上述の地 層境界とほぼ対応している.66 mのそれは,デルタ フロント相堆積物中の砂層 - シルト層境界に対応し ており,負のコントラストを有する速度境界として, 往復走時600 msec 付近に出現する反射面に対比する ことができる.

3.3 GS_NAK2 孔における孔内検層

3.3.1 GS_NAK2 孔およびコア層相概要

GS_AK_SLS1 測線での探査の後,断層変形帯の通 過が想定された地点で層序ボーリングが追加された. このボーリング孔(GS_NAK2 孔)においても各種 検層を実施した.実施時期は同孔掘削直後の 2010 年 6月6~7日である.GS_NAK2 孔の掘削地点(JGD2000: N37°48'56.9",E138°53'19.4",標高+4.03 m,掘進長 78 m)は,高分解能反射法探査測線GS_AK_SLS2の 測線距離では 733 mに該当する(第 12 図).測線と のオフセットは1 m以下である.コア柱状図を第 19 図左端に,また層相を以下に概述する.なおコア柱 状図の両側に示した数値は,その層準で採取された 試料の¹⁴C 年代(暦年較正後)である(宮地ほか, 2010)

深さ 0.0~1.0 m: 道路盛土.

深さ 1.0~9.0 m:シルトと中粒砂の互層からなる 氾濫原堆積物,および極粗粒砂~細礫層からなる河 川流路堆積物.

深さ9.0~17.0m:細粒~中粒砂層を主体とする後 浜~下部外浜堆積物.

深さ17.0~34.8m: 細粒~中粒砂層からなる砂質 ラグーン堆積物.

深さ 34.8~60.3 m: 細粒砂層, ないし砂質シルト 層と泥質細粒砂層の互層を主体とするエスチュア リー堆積物.

深さ 60.4~65.0 m: 淘汰の不良な粗粒砂を主体と する河川流路堆積物.

深さ 65.0~78.0 m: 泥層~細粒砂層からなる上部 更新統堆積物.

以上の堆積相解析および年代測定データから,沖 積層の基底は 65.0 m に比定された.

3.3.2 GS_NAK2 孔検層結果

サスペンション PS 検層によって求められた GS_ NAK2 孔の S 波および P 波速度プロファイルと孔径, コンビネーション検層で得られた単点抵抗,見かけ 比抵抗,帯磁率,全磁力プロファイルを並べて第 19 図に示す.口元深度 5 m までは孔保護のためのケー シングが挿入されていた. コンビネーション検層で はこの区間は欠測としたが、サスペンション PS 検 層についてはケーシング伐管後に地表部のみを再測 した. その結果も併せて示している.

S波速度プロファイルは、基本的に深くなるほど 速度値が大きくなるという一般的な傾向が本孔でも 認められる. また深さ10m, 15m, 25m, 50m, 60 m, 72 m および 75 m に速度跳躍境界が認められる. 反対に深さ38mの砂優勢層-細粒砂シルト互層境界 部と沖積層基底境界(65 m)では下位層の速度が低く, 負の速度コントラストを有する境界として特徴づけ られる. なお深さ6m以浅の低速度部はケーシング 伐管後の拡孔乱れによるものと考えられる.深さ 65m以深の更新統ではVsが300m/s程度であり, GS NAK1 孔の孔底部に出現する更新統とは明らか に物性的に区別される.P波速度は深さ10m以深で は、ほぼ1.6 km/s で一様である. 深さ48 m 付近, 58 m, および 68 m 付近で速度が大きく低下している が,孔径の変動は顕著ではない.これは後述するよ うに初動の著しい減衰の影響で走時を正しく求めら れなかったことによる可能性が高い. 孔径はケーシ ング尻部を除いてほぼ一定であり、掘削・孔壁の仕 上がりが良好であったことがわかる. 単点抵抗(Single Point Resistance)は、ケーブルヘッドと地表電極と の間の電気抵抗の測定値であり、一般には比抵抗値 と同様に粗粒相ほど抵抗値が高く, 孔径や亀裂密度 が高くなるほど低下する. 定性的ではあるものの帯 水層の評価や層相解釈に有用であるとされている. 見掛け比抵抗プロファイルにも共通する傾向が認め られるが、深さ36m以浅の砂優勢層内部でも、特に 8~15 m, 25~36 m の区間が粗粒であることを示唆 している.

帯磁率と全磁力のプロファイルは相互に相補的な 傾向が現れている.深さ9~11m,21~25m,およ び56~60m付近にはサージが認められ,重鉱物の濃 集層に対比することが可能である.

第20図に、ハイドロフォンアレイによるダウン ホール P 波検層のペーストアップ波形, サスペンショ ンP波速度プロファイルと共通受振点ペーストアッ プ波形,およびS波相の走時を並べて示す.ハイド ロフォンアレイによる P 波記録には、最上部のケー シング区間を除いて初動が鮮明に捉えられている. 初動片走時は、深度80mの孔底部で56msec(往復 走時 112 msec), 65 m の沖積層基底部は 55.5 msec, 35 m の砂層-シルト層境界部は24.5 msec に対応す る. GS NAK2 孔における P 波走時は前述した GS NAK1 孔のそれとほぼ同一であり、層序が異なって いても P 波速度物性の面では一様な構造を仮定する ことが可能である.なお深さ40m付近からP波上 向波が,また 50 m 付近から PS 変換上下向波が生起 していることが特徴的である.この深さは、サスペ ンションP波プロファイル上での速度低下部に対応 している. さらにサスペンション P 波検層の共通受 振点ペーストアップ波形では,これらの区間で初動 波形が著しく減衰していることがわかる. このよう な減衰はガス胚胎層に特徴的に見出される現象であ り,本孔においても当該区間にガス胚胎層が分布し ていることが示唆された. いずれの区間もシルト・ 泥層と砂層との互層部に対応していることが興味深 い.

第20図右には、サスペンションS波検層データか ら読み取った1m毎の区間走時を積算して作成した 累積S波走時曲線,ハイドロフォンアレイで観測し た板叩きS波走時(S,E,Wの3方向からの打撃に対 する各々の走時),地表から深さ35mまでボアホー ルピックを用いて収録したダウンホールS波から読 み取った初動走時が重ねて示してある. ダウンホー ルS波に対する初動走時は他と大きく異なっている が、他はほとんど同一走時を示すことから、サスペ ンションS波検層データから計算した走時を本孔に おけるS波初動走時を代表するものとみなしてもよ いであろう. S波の初動片走時は, 孔底 79 m の更 新統部で 333 msec, 65 m の沖積層基底部で 282 msec (往復走時 565 msec), 35 m の砂層下面は 170 msec, 25 m の砂層内速度境界が130 msec, 深さ10 m が 63 msec に対応する. これらの走時を GS NAK1 孔の それと比べると、GS NAK2の走時のほうが明らか に早い. たとえば沖積層基底に対する走時は, 前者 で 430 msec であるのに対し、本孔では 282 msec で しかない.同一層準で比較しても、例えばGS NAK1 孔で深さ 37 m に出現する砂層-シルト優勢層 境界に対する走時が 201 msec であるのに対し, GS NAK2 孔では対比される層境界の出現深度は 35 m で ほほ同深度であるが, 走時は 170 msec であり, 往復 走時にして 60 msec の違いがある. 両孔の S 波走時 を比較すると、深さ10m程度まではほぼ重なり、ま た深さ 20 m 以深はほぼ平行する (第 21 図). これよ り, 主として深さ 10~20 m の区間の砂層の物性の違 いが、両孔の走時の差に影響していることがわかる. 高分解能S波反射法地震探査データの処理解析,特 に深度変換にあたってはこの点、すなわち再表層部 の速度不均質構造の存在に留意して2次元速度層構 造モデルを修正して適用した.

4. 角田・弥彦断層による沖積層の変形構造評価

高分解能反射法地震探査断面,特に沖積層内の構造が詳細にイメージングされているランドストリーマーS波探査断面(GS_AK_SLS2/GS_AK_SLS1 測線)を用い,角田・弥彦断層の最近の活動による変形史の解析を試みる.

第22図は,第16図(b)に示したGS_AK_SLS2 測線S波重合深度断面に対して,主だった反射面を 追跡するとともに,その変形の集中域を断層変形帯 として解釈したものである.また同図には,測線区 間内で実施された2本のコアボーリングの柱状図を 重ねて示してある.追跡した7枚の反射面の特徴を 以下に概述する.

H1:ゆるく東に傾斜し,深さ16~21m付近に出現する.連続性は不良であるが測線全区間で追跡することが可能である.特に測線距離200~400mの区間内では明瞭にイメージングされている.GS_NAK2孔とでは,深さ17mの外浜堆積物最下部層に対比が,またGS_NAK1孔に対しては深さ21m直上の外浜堆積物との対比が可能である.いずれのボーリング孔においてもこの層準に高速度薄層が確認される.下位の反射面がこの反射面に対してトランケーションする構造を解釈することが可能である.

H2:ゆるく東に傾斜し,深さ30~37m付近に出 現する負の極性を有する反射面.測線中央部で断続 的になるもののほぼ測線内全区間で追跡することが できる.GS_NAK2コアで深さ30mに認められる砂 層内境界部に対比することが可能.測線の東では出 現深度が約5m低下する.

H3: 測線距離 600~700 m 間では不明瞭であるが, 深さ 39 m~45 m 付近に認められる強い反射面.いず れのコアでも砂泥互層部に出現し,薄い砂の挟み層 に対比することが可能.

H4: 深さ 50~60 m 付近に認められる強い反射面. GS_NAK1 コアでは深さ 57 m の泥層 – 砂層境界に対 比が可能.またS波速度プロファイルでもほほ同じ 深さにジャンプが認められる.また GS_NAK2 孔で は深さ 52 m に認められる高速度薄層に対比すること ができる.測線の東西では出現深度が約9 m 変化す る.

H5:深さ76~86m付近に認められる明瞭な反射面. GS_NAK1コアで深さ83m付近の薄い砂層(下面) に対比される.

H6: 深さ 86 m~116 m 付近に認められる起伏する 反射面. GS_NAK1 コアで深さ 105 m の薄い砂層(下 面)に対比される.

H7: 測線西端で深さ 112 m, 東側では 160 m 以深 まで落ち込む起伏に富んだ反射面.

特徴的であるのは、これらの反射面群が断面西端 部で屈曲するとともに測線区間内の特定の帯域内で 変形していることである.前述したように、いずれ の変形帯においても下位の反射イベントほど変位量 が大きくなる傾向が共通して認められることから、 これらの変形帯は断続的な断層運動によって形成さ れた初成的な変形構造であると解釈することが可能 である.同様の屈曲変形は他の逆断層変形帯でも認 められ(稲崎・中西,2007)、逆断層の下盤側に特徴 的に発達する前縁断層と解することができる.第22 図にはこのような前縁断層として4条(FF1,FF1', FF2,FF3)を解釈することができる.断面西端の変 形帯はGS_AK_PLS 測線で新潟平野西縁断層の主断 層部と解釈した変形帯の北側延長部に位置し,同様 に主断層部(MF)として解釈した.ただし本GS_ AK_SLS2測線断面では,主断層部は,探査測線西端 部にイメージングされているため全域はイメージン グできておらず,またマイグレーションノイズの影 響を受けていると考えられる.

なお、上述した7枚の反射面のうち、上部の4枚 については2本のコアでの¹⁴C年代はほぼ一致する. しかし反射面H5については堆積年代が明らかに一 致せず、その下位の2枚の反射面についても一致し ない可能性が高い. さらにGS_NAK2 孔において沖 積層の基底と解釈した深度65m付近に出現する反射 面を追跡すると、GS_NAK1 孔でもほぼ同深度に出 現する反射面につながる. この反射面の直上部のコ ア試料年代は、両孔とも10ky程度でほぼ一致する. しかしこの部分に両孔間で出現深度が40mも下降す るような反射面を見出すことはできず、この反射断 面解釈はコア試料年代分析結果と矛盾する. 反射法 探査データの処理解析過程の再検討、およびボーリ ング調査や反射法探査測線の追加も含む現地調査・ コア試料分析の補足が求められる.

第23回に、GS_AK_SLS1測線に対する解釈深度 断面を示す.第22回と同様に、主な反射面と変形帯 を重ねて示してある.またGS_NAK1コア柱状図を、 GS_AK_SLS2測線断面を参考に前縁断層FF1とFF2 の間の区間に投影した.以下にトレースした反射面 の特徴を概述する.

H1: 断面西端部での出現深度は15.6 m, 変形帯部 で屈曲し, 東側では22.2 m まで下降する. 部分的に 断続的になるが, 全区間で追跡可能である. GS_ NAK1 孔で深さ20 m に認められる速度急上昇部に対 比される.

H2:深さ35m付近に出現する極性が負の反射面. 断面西端部での出現深度は28.6m,東側では38.2m まで下降する.一部で断続的になるもののほぼ測線 内全区間で追跡可能.GS_NAK1コアで深さ37mに 認められる砂層-シルト層境界部に対比することが 可能.

H3:深さ50m~45m付近に認められる強い反射面. 断面東側での出現深度は48.6m, 西端部では37.2m まで上昇する, GS_NAK1コアで深さ46mにある泥 層-砂層境界に対比することが可能.

H4:深さ60m付近に認められる強い反射面. 主 断層部前縁で不明瞭となるが,東西に追跡可能. 断 面西端部での出現深度は49.5m,東側では61.3mま で下降する. GS_NAK1コアでは深さ58mの泥層-砂層境界に対比が可能である.

H5:深さ80m付近に認められる強い反射面.測線東側での最深出現深度は82.0m,断続するが西側では61.6mまで上昇する反射イベントにつながる. GS_NAK1コアでは対比層準は明瞭ではない.

H6: 測線東側で深さ115.6 m, 西端で77.8 m まで

上昇する起伏する反射面. GS_NAK1 コアでは深さ 102 m 付近に比定される.

H7:測線中部で深さ115m,西側で87.1mまで上 昇する起伏する反射面.測線中央部で顕著で,東側 では記録長が足りず捉えられていない.GS_NAK1 コアでは深さ108mに確認された沖積層-更新統境 界に対比が可能である.

これらの反射面群は、断層帯として解釈した部分 で集中的に屈曲するが,他の区間ではおおむねフラッ トであることが特徴的である.新潟平野西縁断層の 主変形帯には測線区間 800~900 m に認められる屈曲 変形帯(MF)が比定される.前縁部に見出される3 条 (FF1, FF2, FF3) の屈曲変形帯のなかでは, 測線 距離450m付近のそれが反射面を最も変形させてい る.いずれの変形帯においても下位反射面ほど変形 の度合いが大きいことがわかる. そこで第23 図中に トレースした反射面(H1-H6)を追跡し,屈曲変形 帯部における出現深度の比高と GS NAK1 コアの¹⁴C 年代測定データと比較することで主断層(MF)およ び前縁断層(FF2)による変形の時期および累積性 の解析を試みた.解析結果を第24図に示す.同図で 縦軸は断層帯を挟んだ各反射面の変形量, 横軸は各 反射面に対する¹⁴C年代である.年代測定値の不確 定要素が大きいものの,全体として下位ほど累積変 形量が大きくなる傾向が明瞭に示されている. 平均 変形速度は前縁断層の一つである FF2 で 0.5 m/kyr 程 度, 主断層部 MF で 1.0 m/kyr 程度と見積もることが 可能である.なお前縁断層 FF2 帯での反射面 H1の 変形量は、同変形帯の変形速度の回帰直線からは大 きく外れる.変形量の見積もりの誤差は小さいと考 えられるので,年代値の推定誤差による影響が大き いと考えられる.また主断層帯 MF では最下部の H6 の値が回帰直線から外れている. 反射面解釈が妥当 でない可能性がある. 主断層部の累積変位に対する 回帰線は原点を通らない. H1 反射面形成以降に大き な変位を伴った断層活動があったことが推定される. ところでこの図では直線的な回帰線を描いているが, 断層活動が間欠的である場合, 階段状の折れ線とな るはずである.基準とする反射面をより多く選択す ることで、変形の時代、すなわち新潟平野西縁断層 の最近の活動時期とその周期を絞り込むことが可能 になると期待される.加えて沈降に伴う海水面の相 対的上昇を示唆するイベントの解析結果等と対比す ることで、より詳細な断層の活動性評価が可能にな ると期待される.

5. おわりに

第22図および第23図に示したS波高分解能反射 法地震探査断面は、逆断層による変位が、主断層部 以外にも発生していること、すなわち主断層部のみ の解析では、断層全体の変形量を過小評価する危険 性があることを強く示唆している.

群列ボーリングと地表の局所的なトレンチの組み 合わせで対象断層の活動履歴を明らかにしようとし てきた従来の手法は、このような断層帯前縁・後縁 部の変形 (off-fault deformation)の把握は不可能であ る.これに対し、高分解能反射法地震探査は、断層 帯の内部変形構造を詳細にイメージングすることが できる.これとコアボーリング・稠密年代測定との 組み合わせを標準化することによって、これまで以 上に詳細な断層活動性評価が可能になることが期待 される.

赤塚地区における3本の測線での高分解能反射法 地震探査によって解釈された新潟平野西縁断層の主 断層部および前縁断層の通過位置を第25図にまとめ た.主断層の走向と前縁断層のそれとは斜交してい るように見える.その通過位置はト部ほか(2007) の解釈結果とも調和的である.ただしト部ほか(同上) で検出した断層(変形帯)のほとんどは,前縁断層 に相当すると考えられる.

文 献

- 池田安隆・今泉俊文・東郷正美・平川一臣・宮内崇裕・ 佐藤比呂志(2002)第四紀逆断層アトラス.東 京大学出版会,254p.
- 稲崎富士(1992)地盤調査技術の開発.地下空間の 利用技術の開発報告書,第3分冊,建設省, 2-26.
- Inazaki, T. (1999) Land Streamer; a new system for highresolution S-wave shallow reflection surveys, Proceedings of the 12th Annual Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP1999), 207-216.
- Inazaki, T. (2004) High-resolution seismic reflection surveying at paved areas using an S-wave type Land Streamer. *Exploration Geophysics*, **35**, 1-6.
- 稲崎富士・中西利典(2007) ランドストリーマーS 波反射法による桑名断層の浅部変形構造イメー ジング,物理探査学会第 116 回学術講演会講演 論文集, 253-255.
- 稲崎富士・宮地良典・卜部厚志・山口和雄(2010) P 波ランドストリーマーを用いた新潟平野沿岸陸 域における高分解能反射法探査,日本地球惑星 科学連合 2010 年大会日本地球惑星科学連合 2010 年大会予稿集,SCG088-P11.
- 井上卓彦・木村治夫・岡村行信(2011)新潟沿岸域 海底地質図及び説明書. 海陸シームレス地質情 報集,「新潟沿岸域」,数値地質図 S-2,地質調 査総合センター.
- 石山達也・佐藤比呂志・今泉俊文・鈴木毅彦・戸 田 茂・越後智雄・小池太郎・鎌滝孝信(2009) 角田山東縁断層における高精度浅層反射法地震

探査と群列ボーリング調査. 日本地球惑星科学 連合 2009 年大会予稿集, J245-P012.

- 地震調査研究推進本部(2004)長岡平野西縁断層帯 の評価. 地震調査研究推進本部, 23p.
- 楮原京子・加野直巳・山口和雄・横田俊之・郷 隆之・ 藤原 明・清水信之(2010)新潟海岸南西部に おける海陸接合反射法地震探査-データ取得と 処理-. 地質調査総合センター速報:平成21 年度沿岸域の地質・活断層調査研究報告, no.54, 41-60.
- 楮原京子・加野直巳・山口和雄・横田俊之・住田達哉・ 大滝壽樹・伊藤 忍・横倉隆伸・稲崎富士・宮 地良典・ト部厚志(2011)新潟海岸南西部の反 射法地震探査.海陸シームレス地質情報集,「新 潟沿岸域」,数値地質図 S-2,地質調査総合セン ター.
- 加野直巳・稲崎富士(1998)浅層反射法. 物理探査 ハンドブック,物理探査学会, 194-197.
- 加野直巳・山口和雄・粟田泰夫(1999)角田・弥彦 断層群のP波反射法地震探査.地質調査所速報, EQ/99/3, 47-58.
- 加野直巳・楮原京子・横田俊之・山口和雄(2010) 新潟沿岸域の反射法探査データ再処理. 地質調 査総合センター速報:平成21年度沿岸域の地質・ 活断層調査研究報告, no.54, 69-80.
- 狐崎長琅・中村研治・菊池真市(1975) 漂遊型受震 方式によるS波の検層-(2) 基礎実験-.物 理探鉱,28,106-116.
- 小林巌雄(1996)越後平野地下の第四系.第四紀研究, 35, 191-205.
- 宮地良典・卜部厚志・田辺 晋・安井賢・稲崎富士・ 鴨井幸彦・中西利典・小松原琢・水野清秀(2010) 新潟平野沿岸部のボーリング試料から見た沖積 層の地質構造.地質調査総合センター速報:平 成21年度沿岸域の地質・活断層調査研究報告, no.54, 127-152.
- 仲川隆夫(1985)新潟平野の上部更新統・完新統-とくに沈降現象との関係について-.地質学雑 誌,91,619-635.
- Naruhashi, R., Sugai, T., Fujiwara, O., and Awata, Y., (2008) : Detecting vertical faulting event horizons from Holocene synfaulting in shallow marine sediments on the western margin of the Nobi Plain, central Japan, *Bulletin of the Seismological Society of America*, 98, 447-1457.
- 産業技術総合研究所(2009)活断層データベース. 産業技術総合研究所研究情報公開データベース DB095,産業技術総合研究所.
- 石油公団(1991) 平成2年度国内・石油・天然ガス 基礎調査 海上基礎物理探査「新潟〜富山浅海 域」調査報告書.28p.

- 石油公団(1992):平成3年度国内・石油・天然ガス 基礎調査 海上基礎物理探査「新潟〜富山浅海 域」調査報告書.29p.
- ト部厚志・吉田真見子・高濱信行(2006) 越後平野 の沖積層におけるバリアー-ラグーンシステム の発達様式.地質学論集, no.59, 111-127.
- ト部厚志・渡部 俊・鈴木幸治・村尾治祐・高濱信行・ 渡辺史郎・稲崎富士(2007)反射法弾性波探査 による越後平野西縁断層帯の浅層構造調査,第 四紀研究,46,427-431.
- 山口和雄・住田達哉・加野直巳・大滝壽樹・伊藤 忍・ 横田俊之・横倉隆伸(2009)越後平野西部の沿 岸陸域における千部地下構造調査.地質調査総 合センター速報:平成20年沿岸域の地質・活 断層調査研究報告, no.53, 37-44.
- 吉岡敏和・細矢卓志・橋本智雄・真柄耕治(2007) 砺波平野断層帯および呉羽山断層帯の古地震調 査.活断層・古地震研究報告, no.7, 181-196.

(受付: 2010年12月10日, 受理: 2011年1月15日)

- 第1図 調査地周辺における反射法地震探査およびボーリング地点の位置図.国土地理院発行 1/50000 地形図「内野」と「弥彦」を使用した.
- Fig. 1 Location map showing the survey area superposed with seismic reflection survey lines and drill sites. 1/50000 scale digital maps "Uchino" and "Yahiko" issued by GSI are used as the base map.

第2図 S波探査用ランドストリーマー概要図. Fig. 2 An illustration of the S-wave type Land Streamer deployed in this survey.

第3図 ランドストリーマーのセンサユニットおよびベースプレート. Fig. 3 A close-up of a sensor unit and the base plate for coupling with the paved surface.

第4図 四ツ郷屋地区探査測線およびボーリング地点位置図. 国土地理院発行 1/25000 地形図「内野」を使用. Fig. 4 Map showing the survey line; PW/GS_NYG_PLS and a drill site; GS_NIK at Yotsu-goya site, Niigata City. A 1/25000 scale digital map "Uchino" issued by GSI is used as the base map.

- 第5図 P波探査用フンドストリーマーおよび震源. (a) P波フンドストリーマー (LS_100P2), (b) P波 ランドストリーマー (LS_100P3), (c) P波震源 (Drop Hitter).
- Fig. 5 Photos showing the P-wave type Land Streamer and a P-wave source; (a): P-wave Land Streamer type LS_100P2, (b): P-wave Land Streamer type LS_100P3, (c): A P-wave generation source called Drop Hitter.

第6図 反射法データ処理流れ図.

Fig. 6 Processing flow applied to high-resolution seismic reflection survey data.

第7図 PW/GS_NYG_PLS 測線ショット記録例. Fig. 7 Typical shot records at 6 points along PW/GS_NYG_PLS line.

第8図 多重反射除去処理適用例.

Fig. 8 Comparison of a shot gather (XSHOT = 6760 m) before (a) and after (b) the Surface-Related Multiple Elimination (SRME) process.

第9図 PW/GS_NYG_PLS 測線重合時間断面. Fig. 9 A stacked time section along PW/GS_NYG_PLS line.

第10図 海域探査測線時間断面との比較. (海域探査測線時間断面は加野ほか) (2010) による). Fig. 10 Comparison between the time section along PW/GS_NYG_PLS line and the part of SN_90_A line (Reprocessed by Kano, *et al.* (2010)).

第 12 図 赤塚地区探査測線およびボーリング地点位置図. 国土地理院発行 1/25000 地形図「巻」を使用. Fig. 12 Map showing the seismic survey lines and drill sites at Akatsuka site, Niigata City. A 1/25000 scale digital map "Maki" issued by GSI is used as the base map.

(c)

- 第13図 ランドストリーマー探査震源類. (a) ミニ油圧インパクタ震源, (b) エアハンマー震源, (c) 全天候用ゴムマット.
- Fig. 13 Photos showing field tools deployed for the survey; (a) Mini Hydraulic Impactor, (b) S-wave Air Hammer, (c) A Land Streamer tool covered with rubber mats for avoiding rainfall and wind noises.

第 16 図 赤塚地区 S 波重合深度断面; (a): GS_AK_SLS1 測線断面, (b): GS_AK_SLS2 測線断面.

140 160

Fig. 16 Stacked depth sections along GS_AK_SLS1 line (a) and GS_AK_SLS2 line set at Akatsuka site.

第18図 CS_NAK1 孔ダウンホール PS 検層波形記録. Eise 18 Community of the Annumbrie D and S many m

Fig. 18 Correlation of the downhole P- and S-wave paste-ups recorded in GS_NAK1. Left to right; Lithofacies column of GS_NAK1, Depth sorted paste-up for P-wave record obtained using a hydrophone array tool, Depth sorted paste-ups for S-wave records obtained using a borehole pick and the hydrophone array tool, S-wave velocity profile and the traveltime curve calculated from Suspension logging dataset.

第19 図 GS_NAK2 孔総合検層図. Fig. 19 Synthetic log profile of GS_NAK2. Left to right, Lithofacies column with ¹⁴C dating data, S- and P-wave velocity profiles, caliper, single point resistance, apparent resistivity, susceptibility, and total magnetic field intensity profiles. The lithofacies column for GS_NAK2 was referred from Miyachi, et al. (2010).

第 20 図 GS_NAK2 孔ダウンホール PS 検層波形記録.

Fig. 20 Correlation of the downhole P- and S-wave records obtained in GS_NAK2. Left to right; Lithofacies column of GS_NAK2, Depth sorted paste-up for P-wave record obtained using hydrophone array tool, P-wave velocity profile and depth sorted common receiver waveforms for Suspension logging data, S-wave traveltime curves for 5 different sources or tools.

第 21 図 GS_NAK1 および GS_NAK2 孔間 S 波走時比較. Fig. 21 Comparison of S-wave traveltimes between GS_NAK1 and GS_NAK2.

第 22 図 GS_AK_SLS2 測線 S 波解釈深度断面.

Fig. 22 An interpreted depth section along GS_AK_SLS2 line with the superposition of GS_NAK1 and GS_NAK2 columns. Note that the picked major horizons (H1-H7) are traceable throughout the profile and bend in the specific zones marked as MF and FF1 to FF3.

第 23 図 GS_AK_SLS1 測線 S 波解釈深度断面.

Fig. 23 An interpreted depth section along GS_AK_SLS1 line with the superposition of GS_NAK1 column. Note that deformation structure at on- and off-fault zones is clearly delineated. The major horizons are also picked from H1 to H7.

第 24 図 GS_AK_SLS1 測線断面の変形構造から見積もられた断層による変位の累積. Fig. 24 A cumulative deformation curve caused by the activities of the major fault (MF) and a frontal fault FF2. The average deformation rate was derived from the deformed structure delineated in GS_AK_ SLS1 section and estimated 0.5 m/kyr for FF2 and 1.0 m/kyr for MF.

第 25 図 赤塚地区における断層変形帯の推定通過位置. 国土地理院発行 1/25000 地形図「巻」を使用. Fig. 25 Map showing the distribution of deformation zones inferred from the high-resolution seismic reflection survey result at Akatsuka site, Niigata City. A 1/25000 scale digital map "Maki" issued by GSI is used as the base map.

Land Streamer Parameters	LS_100P2	LS_100P3	LS_50S
No. of Channels Towing Member	96 φ12mm Rope	144 φ3mm Steel Wire	120 φ3mm Steel Wire
Channel Spacing	1 m	1 m	50 cm
Geophone Unit	L25E	LRS	L28DH
Natural Frequency	40 Hz	40 Hz	14 Hz
No. of Elements	1	4	2
Streamer Length	100 m	150 m	75 m

第1表 高分解能反射法地震探査に用いた各種ランドストリーマーの仕様. Table 1 Specifications of the Land Streamers utilized for reflection surveys

第2表四ツ郷屋地区 PW/GS_NYG_PLS 測線探査諸元.

Table 2 Survey parameters adopted for PW/GS_NYG_PLS Line at Yotsu-goya Site.

Sub Line Parameters	PW_NYG_PLS	GS_NYG_PLS
Survey Length	1144 m	1314 m
Land Streamer Tool		
Tool Type	LS_100P2	LS_100P3
Source		
Source Type	Drop H	litter
Vertical Stack	2-8	
Shot Interval	2 m	
No. of Shotpoints	498	583
Recording System		
Instrument	DAS-1	
Recording Length	1 sec	
Sampling Rate	0.25 m	S
No. of Records	566	682

第 3 表 赤塚地区探査諸元. Table 3 Survey parameters adopted at Akatsuka Site.

Line Parameters	GS_AK_PLS	GS_AK_SLS2	GS_AK_SLS2
Survey Length	1600 m	1135 m	880 m
Land Streamer Tool			
Tool Type	LS_100P3	LS_5	ios
Source			
Source Type	Mini Impactor	Air Hammer	
Vertical Stack	2-8	2-1	6
Shot Interval	2 m	1 m	1
No. of Shotpoints	795	1149	1110
Recording System			
Instrument	DAS-1	DAS	-1
Recording Length	1 sec	1 sec	1.6 sec
Sampling Rate	0.25 ms	0.5 n	ns
No. of Records	829	1154	1150

第4表物理検層実施項目および仕様ツール. Table 4 Deployed logging methods, tools and measured variables.

Logging Method	Tool	Measured Variable
Suspension PS Downhole P/S	Suspension PS Logger DH-5 Hydrophone Array	Vs, Vp Vp, (Vs)
Combination	Borehole Pick3315 BMP-04	Vs Resistivity, Temperature, Tilt
Caliper	B3C-01	Susceptibility, Magnetic Field Borehole Diameter