地域地質研究報告 5万分の1地質図幅 小笠原諸島(20)第3号 NG-54-8-16,9-13

母島列島地域の地質

海野 進・石塚 治・金山恭子

平 成 28 年

国立研究開発法人 産業技術総合研究所 地質調査総合センター

()は1:200,000図幅名

位置図

母島列島地域の地質

海野 進^{*}·石塚 治^{**}·金山恭子^{***}

地質調査総合センター(旧地質調査所)は、1882年の創設以来、国土の地球科学的実態を解明するための調査研究を行い、様々な縮尺の地質図を出版してきた.このうち5万分の1地質図幅は独自の地質調査に基づく最も詳細な地質図であり、基本的な地質情報を網羅している.

母島列島地域の地質調査は、平成22~25年度に実施された.地質調査は海野が、化学分析・放射年代測定は石塚が主 担当となって行った.本報告執筆にあたっては、地質を海野、地形・海底地質を石塚、また離島の地質及び全体の岩石記 載・全岩化学組成を金山が担当した.

本研究にあたり多くの方々のご協力を得た.特に以下の関係機関,関係者には格別のご協力をいただいた.ここに記し て感謝する.

現地調査・資料の収集など:東京都小笠原支庁土木課自然公園係,環境省自然環境局小笠原自然保護官事務所,小笠原 総合事務所国有林課,東京都小笠原村役場,平賀秀明,石田忠則,永谷 博の各氏.

試料解析:小竹信宏教授(千葉大学),東北大学金属材料研究所附属量子エネルギー材料科学国際研究センター (⁴⁰Ar/³⁹Ar 年代測定用試料の中性子照射)

岩石薄片の作成:森 英樹(静岡大学),大和田 朗・佐藤卓見・福田和幸(地質情報基盤センター)の各氏.

(平成 27 年度稿)

所 属

*金沢大学理工研究域(平成 22 ~ 27 年度地質調査総合センター活断層・火山研究部門 客員研究員)

** 地質調査総合センター活断層・火山研究部門

*** 鳥取県立博物館 (平成 26 年度地質調査総合センター活断層・火山研究部門 協力研究員)

Keywords : areal geology, geological map, 1:50,000, Eocene, Izu-Ogasawara (Bonin)-Mariana forearc, Bonin, Hahajima, Hahajima Retto, Ogasawara, submarine volcanism, pillow lava, pyroclastic flow deposit, incipient oceanic island arc

11 陸上地形 2 12 海底地形 3 第2章 地質概説 4 21 本報告で使用した用語に関するノート 4 22 母鳥列鳥の基電と地質 4 第3章 古第三系 9 31 御房山寨電と地質 4 第3章 古第三系 9 32 母鳥 10 32.2 豆 商鳥 10 32.1 東台局 10 32.2 西周 10 32.1 東白局 10 32.3 石門局 12 33.1 印局 24 33.3 平局 24 3.3.3 平局 25 3.4 部局 25 3.5 年局のび母鳥鹿鹿のの岩石 26 3.5 1 一般的な非最 3.5.1 一般的な	第1章	地 形	• 1
1.2 海底地形 3 第 2章 地質概認 4 2.1 本報告で使用した用語に関するノート 4 2.2 ほ鳥つ鳥の逸遣と地質 4 第 3章 古第三系 9 3.1 研究史 9 3.2 日 点 島 10 3.2 2 四油層 10 3.2 2 四油層 12 3.2 3 石門層 17 3.3 市島離島 24 3.3 1 向島 24 3.3 1 向島市崎市の小島嶼群 24 3.3 2 母島南崎市の小島嶼群 24 3.3 3 平島 24 3.3 3 平島 25 3.3 4 島島 25 3.3 5 妹島 25 3.3 5 妹島 25 3.3 6 錠島 25 3.3 5 妹島 25 3.3 6 錠島 26 3.5 5 体島及び母島標準の安岩石 26 3.5 1 一般的な特徴 26 3.5 2 かんらん石帯着運輝石支武岩 28 3.5 3 かんらん石帯着運輝石支武岩 28 3.5 4 磁鉄鉱鉱鉱緑電石支配 26 3.5 5 全岩化学組成 28 3.5 4 磁鉄鉱鉱鉱緑電石 28 3.5 4 磁鉄鉱鉱鉱緑電石 28 3.5 4 磁鉄鉱鉱鉱緑電石 28 3.5 4 電 <td< td=""><td>1. 1</td><td>陸上地形</td><td>• 2</td></td<>	1. 1	陸上地形	• 2
第2章 地質概認 4 21 本根告で使用した用語に関するノート 4 22 母鳥列鳥の基盤と地質 4 第3章 古苦三系 9 3.2 母鳥 9 3.2 日鳥 10 3.2.1 東白層 10 3.2.3 百四層 12 3.2.3 百四層 12 3.3 母鳥離鳥 24 3.3 日鳥鳥 24 3.3 日鳥鳥 24 3.3 日鳥鳥 24 3.3 日鳥 24 3.3 日鳥鳥 24 3.3 日鳥鳥 24 3.3 日鳥鳥 24 3.3.4 却鳥 24 3.3.5 妹鳥 25 3.3.6 挺鳥 25 3.3.5 妹鳥 25 3.3.6 挺鳥 26 3.5 女らん石奈飯輝石書画輝石玄武岩町安山岩及び安山岩 26 3.5 生 かららん石奈飯輝石書画輝石玄武岩町安山岩及び安山岩 28 3.5 生 かららん石奈飯輝石書画輝石玄武岩町安山岩及び安山岩 28 3.5 生 和公族地球 秋田書田町 26 3.5 生名ピキン 28 3.5 生名ピキン 28 3.5 生名ピキン 28 3.5 生名ピシャン 28 3.5 生名ピキン 36 4.1 地マペリ北信物 36	1. 2	海底地形	• 3
2.1 本報告で使用した用語に関するノート 4 2.2 環島列島の基盤と地質 4 第3章 古第三系 9 3.1 研究史 9 3.2 郎 島 10 3.2.1 東台層 10 3.2.2 西郎局 12 3.2.3 石門局 17 3.3 母島市崎市の小島嶼群 24 3.3.1 印島 24 3.3.2 母島市崎市の小島嶼群 24 3.3.3 平島 24 3.3.3 第島 24 3.3.3 第島 24 3.3.5 蘇島 25 3.3.5 蘇島 25 3.3.5 蘇島 25 3.5 年島次 26 3.5 年島次 26 3.5 年島次 26 3.5 オ< 小ちんちん石紫線石	第2章	地質概説	• 4
2 2 時約為の寿盤と地質 4 第 3 章 古第三系 9 3 1 研究史 9 3 2 母 高 10 3 2 2 西南岡 10 3 2 3 百円唇 10 3 2 4 西南岡 10 3 2 3 百円唇 17 3 3 日島離島 24 3 3 1 向島 24 3 3 3 年島 24 3 3 4 动局 24 3 3 3 7 高 24 3 3 4 动局 24 3 3 7 高 25 3 3 6 起島 26 3 4 动局 25 3 3 5 成島 25 3 3 6 起島 26 3 4 七郎島 26 3 5 5 年島及び母島維烏の岩石 26 3 5 1 一般的な特徴 26 3 5 2 かんらん石警旅輝石雪道輝石玄武岩質安山岩及びぞけ岩 28 3 5 4 磁鉄鉱紫鉱紫蘇輝石雪道輝石玄武岩質安山岩及びぞけ岩 28 3 5 5 全岩化学組成 28 3 5 5 全治化学組成 28 3 5 5 全治化学組成 28 3 6 2 24 3 7章 26	2.1	本報告で使用した用語に関するノート	• 4
第3章 古第三系 9 3.1 研究史 9 3.2 毋 萬 10 3.2.1 東台層 10 3.2.2 酉浦屬 10 3.2.1 東台層 10 3.2.2 酉浦屬 12 3.2.3 百四層 17 3.3 母島南崎沖の小島嶼群 24 3.3.1 向島 24 3.3.2 母島南崎沖の小島嶼群 24 3.3.3 年島 24 3.3.4 姉島 24 3.3.5 妹島 25 3.3.6 碇島 25 3.3.5 妹島 25 3.3.6 碇島 26 3.4 岩脈類 26 3.5 年島及び母島離鳥の沿石 26 3.5 月 25 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石支武岩 28 3.5.3 かんらん石普通輝石支武岩気 28 3.5.5 全岩化学組成 36 第4 章 第四紀七年の 36 <td>2. 2</td> <td>母島列島の基盤と地質</td> <td>• 4</td>	2. 2	母島列島の基盤と地質	• 4
3.1 研究史 9 3.2 母 鳥 10 3.2.1 東台層 10 3.2.2 西浦層 12 3.2.3 石門層 12 3.3 母島市崎沖の小島嶼群 24 3.3.1 向鳥 24 3.3.2 母島市崎沖の小島嶼群 24 3.3.3 平島 24 3.3.4 姉鳥 25 3.3.5 妹鳥 25 3.3.6 妖島 25 3.3.6 妖島 25 3.3.6 妖島 26 3.4 市鳥 25 3.3.5 妹鳥 25 3.3.6 妖母鳥 26 3.5 小鳥人の石掌鉄輝石書通輝石支武岩質安山岩及びデイサイト 28 3.5.1 一般的な特徴 26 3.5.2 かんらん石掌鉄輝石書通輝石支武岩質安山岩及びデイサイト 28 3.5.5 全岩化学報成 28 3.5.5 全岩化学報成 28 3.5.5 全岩化学報成 28 4.1 地大へり堆積物 36 4.1 地大小球積物 36 4.1 地大へり堆積物 36 4.1 地大へり堆積物 36 4.1 地大、小球積物 36 6.2 褶 曲 38 6.1 断 層 38 6.2 褶 曲 38 6.2 褶 曲 38	第3章	古第三系	• 9
3.2 母 島 10 3.2.1 東台層 10 3.2.2 西浦層 12 3.2.3 石門層 12 3.3 母島離島 24 3.3.1 向局 24 3.3.2 母島南南沖の小島嶼群 24 3.3.3 平島 24 3.3.4 姉島 25 3.3.5 妹鳥 25 3.3.6 妊鳥人び母馬離島の岩石 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石支武岩質安山岩及び安山岩 28 3.5.3 かんらん石等蘇輝石吉通輝石支武岩質安山岩及び安山岩 28 3.5.4 磁鉄敏紫紫蝶和吉海輝石支武岩質安山岩及びデイサイト 28 3.5.5 全岩化半組成 28 第4章 第回紀堆積物 36 4.1 地才べり堆積物 36 4.2 滞近堆積物気び谷広平野堆積物 36 4.1 地才べり堆積物 36 4.2 潜浜堆積物気び谷広平野堆積物 36 6.1 断 層 38 6.2 褶 曲 38 6.2 褶 曲 38 6.2 褶 曲 38 7.1 ロース石 41 7.2 石門一堺ヶ岳周辺の斜面崩埃 41 7.2 石門一堺ヶ岳周辺の斜面崩埃 41 7.2 石門一一堺ヶ岳周辺の斜面崩埃 41	3. 1	研究史	• 9
3.2.1 東台層 10 3.2.2 西浦層 12 3.2.3 石門層 17 3.3 母島維島 24 3.3.1 向島 24 3.3.2 母島南崎沖の小島嶼群 24 3.3.3 平島 24 3.3.3 平島 24 3.3.4 姉島 25 3.3.5 妹島 25 3.3.6 姪島 26 3.4 右島長 26 3.5 母島及び母島維島の岩石 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石支武岩 28 3.5.3 かんらん石薯雄輝石支武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石女山岩及びディサイト 28 3.5.5 全岩化学組成 28 第 4章 第四紀堆積物 26 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 4.1 地すべり堆積物 36 5.4 正賀橋 38 6.1 断 層 38 6.2 褶 曲 38 6.1 断 層 38 6.2 褶 曲 38 7.7 正人石 41 7.1 ロース石 41 7.2 石門〜塚ヶ岳周辺の斜面崩壊	3. 2	母 島	10
3. 2. 2 西浦層 12 3. 3 石門層 17 3. 3 母島離鳥 24 3. 3. 1 向島 24 3. 3. 2 母島南崎沖の小島嶼群 24 3. 3. 3 平島 24 3. 3. 4 姉島 24 3. 3. 5 妹島 25 3. 3 6 挺島 25 3. 3 6 挺島 26 3. 4 ボ島 26 3. 5 廿鳥友び母鳥離鳥の岩石 26 3. 5 1 一般的な特徴 26 3. 5 2 かんらん石普通輝石玄武岩 28 3. 5 3 かんらん石普藤輝石玄武岩質安山岩及び安山岩 28 3. 5 4 磁鉄鉱紫蘇紫離石普通輝石安山岩及びディサイト 28 3. 5 5 全岩化学組成 28 4 章 添浜堆積物 36 4 1 地すべり堆積物 36 4 2 海浜堆積物及び谷底平野堆積物 36 5 5 章 海底地質 37 第 6 章 地質構造 38 6.1 断 層 38 6.2 褶 曲 38 第 7 章 応用地質 31 7. 1 ロース石 41 7. 2 石門〜堺ヶ岳周辺の斜面崩壊 41 7. 2 石門〜堺ヶ岳周辺の斜面崩壊 41	3. 2.	. 1 東台層	10
3.2.3 石門層 17 3.3 母島離島 24 3.3.1 向局 24 3.3.2 母島南崎沖の小島嶼群 24 3.3.3 平局 24 3.3.4 姉島 24 3.3.5 妹島 25 3.3.6 姥島 25 3.3.6 姥島 26 3.4 岩脈類 26 3.5 母島及び母島離島の岩石 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石支武岩 28 3.5.3 かんらん石紫蘇輝石普通輝石支武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石支武岩質安山岩及び安山岩 28 3.5.5 全岩化学組成 28 第.5.5 全岩化学組成 36 年 海浜堆積物及び谷底平野堆積物 36 4.1 地すべり堆積物 36 6.2 溜 曲 38 6.1 断 層 38 6.2 溜 曲 38 第.7 章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41	3. 2.	. 2 西浦層	12
3.3 母島離島 24 3.3.1 向島 24 3.3.2 母島南崎沖の小島嶼群 24 3.3.3 平島 24 3.3.4 姉島 25 3.3.5 妹島 25 3.3.6 妩島 25 3.3.6 妩島 26 3.4 甘脈類 26 3.5 母島及び母島離島の岩石 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石玄武岩 28 3.5.3 かんらん石紫蘇輝石普通輝石玄武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石支武岩質安山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第.5.4 磁鉄鉱紫蘇輝石普通輝石支武岩質安山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第.5.5 全岩化学組成 28 第.5 全岩化学組成 28 第.6 章 第四紀堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 6.1 断 層 38 6.2 潜 曲 38 第.7章 応囲地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 42	3. 2.	. 3 石門層	17
3.3.1 向島 24 3.3.2 母島南崎沖の小島嶼群 24 3.3.3 平島 24 3.3.4 姉島 25 3.3.5 妺鳥 25 3.3.6 延島 26 3.4 岩脈類 26 3.5 母島及び母島離島の岩石 26 3.5 母島及び母島離島の岩石 26 3.5 母島及び母島離局の岩石 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石支武岩 28 3.5.3 かんらん石紫蝶輝石普通輝石支武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石支武岩質安山岩及び安山岩 28 3.5.5 全紀や洋組成 28 3.5.5 全紀や洋組成 28 3.5.5 全紀や洋組成 28 第.5 全部に発行物 36 4.1 地ぐり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 5.5 海底地質 37 第6 章 地質構造 38 6.2 褶 4 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41	3. 3	母島離島	24
3.3.2 建島南崎沖の小島嶼群 24 3.3.3 平島 24 3.3.4 姉島 25 3.3.5 妺島 25 3.3.6 延島 26 3.4 岩脈類 26 3.5 毋島及び母島離島の岩石 26 3.5 日島及び母島離島の岩石 26 3.5 日島及び母島離局の岩石 26 3.5 日島及び母島離石支武岩 28 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石支武岩 28 3.5.3 かんらん石紫蘇輝石普通輝石支武岩 (安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石支山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第.5.5 全岩化学組成 28 第.5.5 全岩化学組成 28 第.5.5 全岩化学組成 28 第.6.2 海底地質 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 6.1 断 層 38 6.1 断 層 38 6.2 褶 曲 38 第.2 福 曲 38	3. 3.	. 1 向島	24
3.3.3 平島 24 3.3.4 姉島 25 3.3.5 妹島 25 3.3.6 妊島 26 3.4 岩脈類 26 3.5 母島及び母島離島の岩石 26 3.5 日島及び母島離島の岩石 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石支武岩 28 3.5.3 かんらん石紫蘇輝石普通輝石支武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石支山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第.5.5 全岩化学組成 28 第.6.2 潜に地質 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 6.1 断 層 38 6.2 褶 曲 38 第.7 章 応用地質 41 7.1 ロース石 41 7.2 石門〜果ヶ岳周辺の斜面崩壊 41 7.2 石門〜果ヶ岳周辺の斜面崩壊 41 7.2 祇 42 Abstract 45	3. 3.	. 2 母島南崎沖の小島嶼群	24
3.3.4 姉島 25 3.3.5 妹島 25 3.3.6 妊島 26 3.4 岩脈類 26 3.5 母鳥及び母鳥離鳥の岩石 26 3.5 1 一般的な特徴 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石支武岩 28 3.5.3 かんらん石普通輝石支武岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石支武岩質安山岩及び安山岩 28 3.5.5 全岩化学組成 28 3.5.5 全岩化学組成 28 第.5.5 全岩化学組成 28 第.6 章 端四紀堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 5.5 章 海底地質 37 第.6 章 地質構造 38 6.1 断 層 38 6.2 褶 曲 38 第.7 章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	3. 3.	. 3 平島	24
3.3.5 妺島 25 3.3.6 延島 26 3.4 岩脈類 26 3.5 母鳥及び母鳥離鳥の岩石 26 3.5 1 一般的な特徴 26 3.5.2 かんらん石普通輝石支武岩 28 3.5.3 かんらん石普通輝石支武岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石支武岩賞安山岩及び安山岩 28 3.5.5 全岩化学組成 28 3.5.5 全岩化学組成 28 第.5.5 全岩化学組成 28 第.6.1 助子心り堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 6.1 助層 38 6.2 褶曲 38 6.2 褶曲 38 第.7 章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	3. 3.	. 4 姉島	25
3.3.6 姪鳥 26 3.4 岩脈類 26 3.5 母鳥及び母鳥離鳥の岩石 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石玄武岩 28 3.5.3 かんらん石紫蘇輝石普通輝石玄武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石玄武岩質安山岩及び安山岩 28 3.5.5 全岩化学組成 28 第.5.5 全岩化学組成 28 第.6.2 海浜堆積物及び谷底平野堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 4.1 断 層 38 6.2 褶 曲 38 6.2 褶 曲 38 第.7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	3. 3.	. 5 妹島	25
3.4 岩脈類 26 3.5 母島及び母島離島の岩石 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石玄武岩 28 3.5.3 かんらん石紫蘇輝石普通輝石玄武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石安山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第.5.5 全岩化学組成 28 第.4 第 <li< td=""><td>3. 3.</td><td>. 6 姪島</td><td>26</td></li<>	3. 3.	. 6 姪島	26
3.5 母鳥及び母鳥離鳥の岩石 26 3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石玄武岩質安山岩及び安山岩 28 3.5.3 かんらん石紫蘇輝石普通輝石玄武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石安山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第4章 第四紀堆積物 26 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 第5章 海底地質 37 第6章 地質構造 38 6.1 断 8 6.2 褶 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	3.4	岩脈類	26
3.5.1 一般的な特徴 26 3.5.2 かんらん石普通輝石玄武岩 28 3.5.3 かんらん石紫蘇輝石普通輝石玄武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石安山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第4章 第四紀堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 6.1 断 層 38 6.2 褶 曲 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	3. 5	母島及び母島離島の岩石	26
3.5.2 かんらん石薯麺輝石玄武岩質安山岩及び安山岩 28 3.5.3 かんらん石紫蘇輝石普通輝石玄武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石安山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第4章 第四紀堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 6.1 断 層 38 6.2 褶 曲 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	3. 5.	. 1 一般的な特徴	26
3.5.3 かんらん石紫蘇輝石普通輝石玄武岩質安山岩及び安山岩 28 3.5.4 磁鉄鉱紫蘇輝石普通輝石安山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第4章 第四紀堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 第5章 海底地質 37 第6章 地質構造 38 6.1 断 層 38 6.2 褶 曲 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	3. 5.	. 2 かんらん石普通輝石玄武岩	28
3.5.4 磁鉄鉱紫蘇輝石普通輝石安山岩及びデイサイト 28 3.5.5 全岩化学組成 28 第4章 第四紀堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 第5章 海底地質 37 第6章 地質構造 38 6.1 断層 38 6.2 褶 曲 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42	3. 5.	. 3 かんらん石紫蘇輝石普通輝石玄武岩質安山岩及び安山岩	28
3. 5. 5 全岩化学組成 28 第 4 章 第四紀堆積物 36 4. 1 地すべり堆積物 36 4. 2 海浜堆積物及び谷底平野堆積物 36 第 5 章 海底地質 37 第 6 章 地質構造 38 6. 1 断 層 38 6. 2 褶 曲 38 第 7 章 応用地質 41 7. 1 ロース石 41 7. 2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	3. 5.	. 4 磁鉄鉱紫蘇輝石普通輝石安山岩及びデイサイト	28
第4章 第四紀堆積物 36 4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 第5章 海底地質 36 第5章 海底地質 37 第6章 地質構造 38 6.1 断層 38 6.2 褶曲 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	3. 5.	. 5 全岩化学組成	28
4.1 地すべり堆積物 36 4.2 海浜堆積物及び谷底平野堆積物 36 第5章 海底地質 37 第6章 地質構造 38 6.1 断層 38 6.2 褶曲 38 7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	第4章	第四紀堆積物	36
4.2 海浜堆積物及び谷底平野堆積物 36 第5章 海底地質 37 第6章 地質構造 38 6.1 断層 38 6.2 褶曲 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	4. 1	地すべり堆積物	36
第5章 海底地質・ 37 第6章 地質構造・ 38 6.1 断層 38 6.2 褶曲 38 第7章 応用地質 38 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	4. 2	海浜堆積物及び谷底平野堆積物	36
第6章 地質構造 38 6.1 断層 38 6.2 褶曲 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	第5章	海底地質	37
6.1 断層 38 6.2 褶曲 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	第6章	地質構造	38
6.2 褶曲 38 第7章 応用地質 41 7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	6.1	断 層	38
第7章 応用地質・ 41 7.1 ロース石 7.2 石門〜堺ヶ岳周辺の斜面崩壊 文 献 42 Abstract 45	6.2	褶 曲	38
7.1 ロース石 41 7.2 石門〜堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	第7章	応用地質	41
7.2 石門~堺ヶ岳周辺の斜面崩壊 41 文 献 42 Abstract 45	7.1	ロース石	41
文 献 42 Abstract 45	7.2	石門~堺ヶ岳周辺の斜面崩壊	41
Abstract 45	文 献		42
	Abstract		45

第1.1	図	小笠原群島周辺の海底地形	• 1
第1.2	2図	石門地区における大規模な崩落	· 2
第1.3	3図	母島本島南端部小富士山頂よりみた母島離島	• 3
第2.1	Y	小笠原群島,古第三系の地質総括図	• 5
第2.2	2図	母島列島の柱状図・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 6
第3.1	Y	母島北西海岸に露出する東台層最下部の弱~強溶結の降下火砕岩	11
第3.2	2図	母島北岬の東台層ハイアロクラスタイトの火口を埋めた漏斗型の塊状溶岩	12
第3.3	3図	東山の溶結降下火砕岩	13
第3.4	1図	東台層と西浦層及び石門層の間の不整合	14
第3.5	5図	西浦大沢橋近くの石質火砕流堆積岩	15
第3.6	5図	沖港東岸の成層凝灰角礫岩	16
第3.7	7 🗵	蝙蝠谷の南の海食崖	16
第3.8	3図	西浦北岸の安山岩アア溶岩と安山岩ハイアロクラスタイト	16
第3.9) 図	石門崎の不整合	18
第3.10)図	臥牛角の不整合を覆う凝灰角礫岩	19
第3.11	1図	裏高根の対岸に露出する石門層の礫岩中の白色軽石凝灰角礫岩	20
第3.12	2図	南京浜のサージ堆積物	21
第3.13	3図	雄さん海岸の南岸の生痕化石	22
第3.14	4図	御幸之浜の含貨幣石砂岩及び礫岩	23
第3.15	5図	向島の降下火砕岩と岩脈	24
第3.16	6図	姉島の玄武岩枕状溶岩と割れ目火口	25
第3.17	7図	妹島南岸の上部ユニットと中部ユニットを貫く北北東走向の平行岩脈群	26
第3.18	8図	姪島北西岸の割れ目火口とハイアロクラスタイト	27
第3.19	9図	母島本島と離島の岩脈走向の頻度分布	27
第3.20)図	母島の玄武岩及び安山岩の顕微鏡写真	29
第3.21	1図	全岩FeO/MgO-SiO2図	30
第3.22	2図	全岩K ₂ O, MgO, TiO ₂ -SiO ₂ 図	34
第3.23	3図	全岩La-Yb, Pb/Yb-Nb/Yb図	35
第4.1	図	母島石門の滑落崖と地すべり堆積物	36
第5.1	図	母島列島周辺の海底地形と火山岩の分布	37
第6.1	図	母島列島の褶曲軸, 断層分布と見かけの落差	39
第2.1	表	小笠原群島の放射年代と化石年代	· 7
第3.1	表	小笠原群島母島列島の全岩化学組成	31
Fig. 1	l St	ummary of the geology of the Hahajima Retto District	45

図・表目次

(石塚 治,海野 進)

母島列島地域は、世界測地系において北緯26度31分27秒~26度43分27秒(日本測地系26度31分12秒~26度43分12秒)、東経142度6分0秒~142度15分0秒(日本測地系142度06分12秒~142度15分12秒)

の範囲に位置する(第1.1図). 行政区分としては,全 域が東京都小笠原村に属する.以下,陸上と海底にわけ て地形の概説を述べる.

第1.1図 小笠原群島周辺の海底地形. 母島列島図幅の地域を合わせて示す.

1.1 陸上地形

母島列島は、小笠原群島(智島列島, 父島列島, 母島 列島)の南部を構成する島嶼である.この列島は、母島 本島とその南方4~5kmに分布する島々(以降母島離 島と称する)からなる.

母島は、北北西 - 南南東方向に延びた形状を示し、13 ×4 kmの大きさを持つ.島中央部には、標高463 mの 乳房山、444 mの堺ヶ岳を含む急峻な尾根が連なり、東 側、西側とも海まで急斜面が続く.特に東側斜面は海ま で達する比高最大約350 m に達する急崖が発達する.西 岸は猪熊湾,沖港といった小規模な湾を除くと比較的直 線的な形状を示すが、東岸は、東港、大崩湾、東崎湾と 大きな湾が連なり、様相が異なる.島北東部の石門地区 には、石灰岩地域特有のカルスト地形や鍾乳洞が発達す る.石門地区の南東岸には大規模な崩落による断崖が形 成され、海岸部に大量の崩壊堆積物が存在する.最近で は1997 年 11 月の台風25 号による大雨時に大きな斜面 崩壊があり、基盤の凝灰角礫岩(Sc)直上の石門層の礫 岩と石灰岩が崩落した(第1.2 図;吉田、1998).同様 の大規模な崩落地形は、堺ヶ岳東側にも見られる. 島の中心部で港のある沖港地区より南に延びる地域 は、比較的地形がゆるやかで、海岸は概ね比高100m未 満の海食崖が発達するが、内陸部は比較的平坦で、西へ 向かって緩傾斜する.他の小笠原諸島の島々と同様、標 高約100m,60m及び20mに海成段丘起源と考えられ る平坦面が存在する(今泉,2000).沖港周辺には石灰 岩に伴う鍾乳洞が存在する.

母島離島は,約20の島及び岩礁からなる. この中で 比較的大型の島は,向島(1.7×1 km),平島(1.7×0.5 km),姉島(2.5×0.8 km), 妹島(2×1 km), 姪島(1.3 ×1 km)である. この中で向島,平島,姉島, 姪島はい ずれも高さ10~50 m ほどの海食崖で囲まれるが,島の 中央部は比較的なだらかで,最高点の標高は57~137 mである. 一方妹島は急峻な地形を示し,標高216 mの 最高点を含む尾根が東西に延び,そこから急斜面が海岸 部の20~150 m の断崖に接続している.

これら大型の島以外に,母島本島南端部から平島にかけて,径が1 km に満たない島々が北東 - 南西方向に連なる (鰹鳥島や丸島,二子島等:第1.3 図).

第1.2図 石門地区における大規模な崩落. 白色の石門層の礫岩と石灰岩が崩落した.石門山北東の尾根から望む.

第1.3図 母島本島南端部小富士山頂よりみた母島離島.

1.2 海底地形

母島列島は、七島硫黄島海嶺(伊豆小笠原弧の火山フ ロント)とは小笠原トラフにより隔てられた非活動的な 前弧である小笠原海嶺上に位置する(第1.1図).小笠 原海嶺は、北より聟島列島、父島列島、母島列島よりな る小笠原群島を海面に浮かべ、全体として約500 km に わたり南北に延び、幅5~20 kmの一つの大きな高まり である.海嶺の西側は小笠原トラフへと急傾斜で落ち込 み、東側はゆるい傾斜で伊豆・小笠原海溝へ下がってい る.小笠原海嶺の北端部は、北緯29度50分付近で伊豆・ 小笠原海溝へ開く谷に切られ、南側へは北緯26度付近 でいったん途切れるが、その南方にも比高の低い、幅広 い高まりが前弧に存在する. 母島列島の東側では、太平洋プレート上に東西約 600 km,南北 300 km,比高約 1,500 ~ 4,000 m に達する小 笠原海台が存在し、それが海溝にまで到達している(第 1.1 図).この海台の沈み込み衝突のために、母島列島 東側の伊豆小笠原海溝は水深約 3,000 m 程度にまで浅く なっている.また海溝陸側斜面には、母島海山と呼ばれ る高まりが存在し、蛇紋岩、無人岩、アダカイト等の多 様な岩石が採取されている(Ishiwatari *et al.*,2006).

母島列島沿岸部では他の小笠原群島の島々と同様に陸 棚の発達が見られる.東側沿岸部の方が西側に比べて傾 斜が全般にゆるやかであり,水深約350m前後まで緩傾 斜が続く.一方西側では小笠原トラフに向かって急斜面 が連続している.西側では,猪熊湾西方に海底谷の形成 が見られる.

(海野 進)

2.1 本報告で使用した用語に関するノート

母島列島地域の範囲では、玄武岩質からデイサイト質 までの広い組成範囲にわたるマグマが浅海底から陸上で 噴火・堆積し, 溶岩流や火砕岩 (火砕物)となって分布 する. 砕屑岩の多くは火山噴出物を主要構成物とする一 次的な火山砕屑岩と、それらが二次的に再堆積した火山 性の砕屑岩である.本地域の地質図及び報告ではこれら の砕屑岩を広く"火山砕屑岩"と呼び、成因に関係なく 粒度組成にしたがって"**火山角礫岩**", "凝灰角礫岩", "凝灰岩"等を用いた。一次的な火砕岩には、爆発性の 噴火によって生じた降下火砕岩や火砕流堆積物と,水底 溶岩流の流動に伴う非爆発的な営力によって生じたと考 えられるガラス質ないし隠微晶質の "ハイアロクラスタ **イト**"がある.これらのうち,地質図上に表現できる分 布をなし、特徴的な岩相を有するものについては、"ス コリア凝灰角礫岩"、"軽石凝灰角礫岩"、"ハイアロクラ スタイト"などと表記した.火砕流起源の堆積物の多く は、やや続成作用が進んで固結した凝灰角礫岩ないし凝 灰岩である.しかし,火砕流起源の一次堆積物に対して は溶結・固化した部分も含めて火砕流"堆積物"という 呼称が用いられることに準じ、特に産状を強調したい場 合には"**火砕流堆積物**"の呼称を用いた. ハイアロクラ スタイト中には同岩質の径数 m ~数 10 m の塊状ないし 板状溶岩が包有されるが、これら全体を総じてハイアロ クラスタイトと呼ぶ.これは、クリンカーとその間に挟 在する板状部ないし塊状部 (固結した液状部)全体をア ア溶岩や塊状溶岩と称するのに準じたものである。特に 板状部や塊状部に言及する場合には、ハイアロクラスタ イト中の"板状 (塊状) 溶岩"などと表記した.二次的 な火山性砕屑岩のうち, 主として円磨された火山岩礫を 含み、よく成層したものは粒度組成に準じて"成層礫岩", "成層砂岩"などと表記した。これらのうち特に貨幣石 や貝化石を多く含むものについては、石灰質の堆積岩と 区別して"火山性砂岩"などという表記をした.

本報告では、国際的に統一された Landslide (Cruden and Varnes, 1996)の直訳である広義の"地すべり"を用 いている.この国際的な合意された定義では、Landslide を"the movement of a mass of rock, debris or earth down a slope「岩, 土あるいはその混合物の斜面下降運動」" と定めている (Cruden, 1991; Cruden and Varnes, 1996; 佐々, 2007).また、有孔虫化石帯と絶対年代の対比は Gradstein et al. (2012) によった.

2.2 母島列島の基盤と地質

母島列島を構成する火山群形成に先立って、5,200~ 4,800万年前に小笠原海嶺全域で中央海嶺玄武岩(前弧 玄武岩 forearc basalt; Reagan et al. (2010) または先島弧 玄武岩 protoarc basalt; Umino et al. (2015) などと呼ばれ る) と類似した海底火山活動があり,引き続いて 4,800 ~4,500万年前には主として無人岩及びその分化物から なる海底火山活動が起きた (第2.1図) (Ishizuka et al., 2006, 2011; Kanayama et al., 2012). 智島列島の北之島・ 中ノ島は島弧ソレアイト系列の安山岩~デイサイトの溶 結降下火砕岩・岩脈からなり、父島南西部にも同岩質の ジョンビーチ火山岩類が分布する(海野・中野, 2007; Ishizuka et al., 2014). 5万分の1地質図幅「父島列島地 域の地質」では、ジョンビーチ火山岩類は円縁湾層の無 人岩溶岩の間に挟在するとあるが、その後の調査により 浸食されたジョンビーチ火山岩類の溶岩を無人岩枕状溶 岩が覆うことが確認された.したがって、これらの島弧 ソレアイト系列岩は、無人岩類に先行する先島弧玄武岩 類の最末期噴出物であると考えられる。無人岩及びその 分化物は父島以北の島嶼(父島列島, 聟島列島)に広く 分布するほか、母島南東沖の母島海山からドレッジされ ていることから(Ishii, 1985;石井, 1986; Ishiwatari et al., 2006;海野・石渡, 2006), 無人岩類または先島弧玄武 岩類が母島火山群の基盤をなしていると考えられる.

父島列島〜聟島列島を形成した海底火山の噴火は,無 人岩溶岩の急冷ガラス中の含水量や放散虫化石,有孔虫 化石の保存状態から水深2,000~5,000 m (Dobson, 1986, 1995)の深海で起きたと考えられる.水深は 4,800~4,500万年前にかけて次第に浅くなり,父島は 遅くとも漸新世までに陸化した.父島南西端の南崎では 浸食された溶岩層と岩脈群をラテライトが覆い,その上 位に漸新世〜中新世初期の礁性石灰岩が発達した(松丸, 1976; Matsumaru, 1984, 1996; Umino, 1985;海野・中野, 2007).一方,母島列島の主体をなす火山群は4,500万 年前に既に浅海であった海底で誕生し,4,000万年前ま でに一部は陸化し火山島となっていたと考えられる (海野・石渡, 2006;海野ほか, 2009; Kanayama et al., 2014).溶岩中に狭在する堆積物からは,50 m 以浅の古 水深を示す底生有孔虫化石(*Cibicides* sp., *Quinqueloculina*

第2.1 図 小笠原群島,古第三系の地質総括図. 地層名のボックスを結ぶ縦太線は各層の被覆関係(不整合)を表す.

sp., *Textularia* sp.) が得られている (中島, 1991 MS:山本· 海野, 1992;山本, 1993 MS). また, 石門層下部の底生 有孔虫化石群集を含む石灰質砂岩は水深 100 ~ 200 m の 静かな浅海で堆積したと考えられる (藤田ほか, 1995; Matsumaru, 1996).

母島列島の主体は浅海底で噴火した海底火山の噴出物 からなり、一部に陸上噴火・堆積と考えられる溶岩や火 砕岩を含む火山群を形成した.層序的上位では有孔虫化 石等を含む火山性あるいは石灰質の砂岩・礫岩を火山岩 中に挟在し、母島本島では最上位に礁性石灰岩がくる が、母島南方では浅海底での火山活動が継続し、後の離 島群となる海底火山群を形成した.これらの地層は不整 合により、下位から東台層、西浦層、石門層の各層に分 けられる(第2.1図,第2.2図).東台層は主に母島北 部を占め、下部は中〜強溶結の降下火砕岩とハイアロク ラスタイトの互層からなる.火砕岩は水冷火山弾を含み、 発泡度が低くあまり酸化していない岩片からなり、ハイ アロクラスタイトや礫岩と互層することから水中噴火・ 水底堆積と考えられる.

込んだ浸食面を覆う赤色砂岩礫岩や水中火砕流起源の軽 石凝灰角礫岩,降下火砕岩,ベースサージ堆積物,砂岩 礫岩などからなる.上部はハイアロクラスタイトと石灰 岩からなる.母島中~南部では未固結の砂岩礫岩やサー ジ堆積岩に貫入したハイアロクラスタイトが見られる. 砂岩礫岩や石灰岩は有孔虫化石などを多産する.一方, 母島の南方沖合に点在する母島離島は主にハイアロクラ スタイトとを下火砕岩,それらの二次堆積物からなり, 向島や妹島では多数の岩脈によって貫入される.鍵層と なる軽石・スコリア凝灰岩の存在と放射年代から,石門 層に対比される(Kanayama et al., 2014).

東台層最下部の安山岩は 45.3 Ma, 同層上部のハイア ロクラスタイト及び礫岩中の安山岩礫は 44.0 ~ 42.7 Ma という Ar/Ar 年代を示す(第2.1 表, Ishizuka *et al.*, 2006;石塚, 2013).西浦層からは有効な放射年代や化 石年代は得られていない.石門層下部の石灰質砂岩は 浮遊性有孔虫帯 P13 ~ P14 (4,060 ~ 3,850 万年前; Matsumaru, 1996),上部の石灰岩は P15 ~ P17 (3,850 ~ 3,380 万年前; Matsumaru, 1996)に対比される.石門層 下部の石灰質砂岩(P13:4,060 ~ 4,010 万年前; Matsumaru, 1996)には 40.2 Ma (Ar/Ar 年代;石塚, 2013) の安山岩ハイアロクラスタイトが貫入し,同じく石門に 対比される旋島,姉島,妹島からは 40.6 ~ 37.3 Ma の Ar/Ar 年代(石塚, 2013)が得られていることから,石 灰岩の堆積開始時に少なくとも南部では火山活動が継続 していた.

母島本島及び離島はいずれも島弧ソレアイト系列及び

(B)

第2.2図 母島列島の柱状図.

(A)母島本島. 地層名の記号は地質図と同じ. 柱状図間の実線は鍵層となるテフラ層. 破線は不整合の層準を示す.
 (B)離島の岩相柱状図. TH, CA はそれぞれソレアイト系列, カルクアルカリ岩系列を, H, M, L はそれぞれ高La/Yb 比, 中La/Yb 比, 低La/Yb 比グループを表す(第3.5.5項参照).

第2.1表 小笠原群島の放射年代と化石年代. 浮遊性有孔虫化石帯の数値年代は Gradstein *et al.* (2012) による.

討利	· 地点/層準	712	緯度	全元	径度	岩相	浮遊性有孔	年代	数值年代 (Ma)	出典
番号		叀	尔	剫	公		虫化石帯	測定手法		
	留母									
	石門層									
	石門					石灰岩 (S1)	P15-17		38.6-34.0	Matsumaru (1996)
	石門南西端	26°	40.720'	142°	9.5843'	石灰岩 (S1)		$^{87}{\rm Sr}/^{86}{\rm Sr}$	34.0-32.1	本図幅
	石門南西端	26°	40.720'	142°	9.5843'	石灰岩(S1)		$^{87}Sr/^{86}Sr$	34.0-32.1	本図幅
	月ヶ岡神社					石灰岩(S1)	P15(-17)		38.6-34.0	Matsumaru (1984, 1996)
	月ヶ岡神社					石灰岩(S1)	P14		40.0-38.6	藤田ほか(1995)
	神港	26°	38.368	142°	9.546'	石灰岩(S1)		$^{87}{\rm Sr}/^{86}{\rm Sr}$	34.0-32.1	本図幅
	と思いていた。					石灰質砂岩(Ss)	P13-14		40.5-40.0	Matsumaru (1996)
	沖港					石灰質砂岩(Ss)	P13-14		40.5-40.0	藤田ほか(1995)
	地本	26°	38.341	142°	9.563'	石灰質砂岩(Ss)		$^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$	34.0-32.1	本図幅
	売					石灰質砂岩(Ss)	P11-13		43.9-40.0	藤田ほか(1995)
	御幸之浜~雄さん海岸					砂岩(Ss), 礫岩(Sc)	P13		40.5-40.0	Matsumaru (1996)
	御幸之浜	26°	37.879'	142°	10.027	含貨幣石礫岩(Sc)		$^{87}Sr/^{86}Sr$	43.3-40.5 or 38.6-35.7	本図幅
1	南京浜	26°	37.939'	142°	10.153'	紫蘇輝石普通輝石安山岩 (Sa)		Ar/Ar	40.2 ± 0.5	石塚(2013)
	東台層 東半南田					・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		~~V/~~V	11 0+0 3	Tchimbo of al (2006)
Ċ	米商田四十七十二	ĉ	1237 07	- 100	0 0711	2-2021 米駅産生 司通保工 久田石 (113)よ、、、 とま株舗 とまば 諸子子 (11)				$\frac{1511120Na}{7}\frac{et}{12}\frac{at}{10010}$
2 m	果可北/年 西台 一	70 70°	41.990	142°	8.8/1 7.703'	カントンらい4米鰥吽4貴迪吽4女山石(Hc) 紫蘇輝石普通輝石安山岩(Hp)		Ar/Ar Ar/Ar	42.66 ± 0.19 45.28 ± 0.17	石琢 (2013) 石塚(2013)
	岩脈									
	北港					かんらん石紫蘇輝石普通輝石安山岩 (Dk)		K-Ar	41.4-39.3	Kaneoka et al. (1970)
4	離島 妹島南西岸	26°	33.252'	142°	12.188'	紫藤輝石普通輝石安山岩 (Sps)		Ar/Ar	37,3+0.4	五塚(2013)
2	妹島北岸	26°	33.818'	142°	12.502'	紫蘇輝石普通輝石安山岩(Sps)		Ar/Ar	39,8+0.7	石塚(2013)
9	妹島野羊島間岩礁	26°	33.908'	142°	12.790'	かんらん石含有紫蘇輝石普通輝石玄武岩 (Sps)		Ar/Ar	38.9 ± 0.7	石塚(2013)
7	姪島南岸	26°	34.015'	142°	13.948'	かんらん石紫蘇輝石普通輝石安山岩 (Sa)		Ar/Ar	37.8 ± 0.4	石塚(2013)
8	姉島南岸	26°	32.755'	142°	9.207	かんらん石普通輝石玄武岩(Sbs)		Ar/Ar	40.6 ± 0.9	石塚(2013)

カルクアルカリ岩系列の岩石からなり,安山岩を主とし て,玄武岩やデイサイトを伴う(黒田ほか,1982:舟橋・ 黒田,1988;矢嶋ほか,2001;海野・石渡,2006;海野 ほか,2011;Kanayama *et al.*,2014).安山岩の多くは斑 晶として斜長石,かんらん石,斜方輝石,単斜輝石,磁 鉄鉱を有し、カルクアルカリ岩質安山岩では少量の石英 斑晶が出現する.ソレアイト質玄武岩は斑晶として単斜 輝石,かんらん石,斜長石を有するが、カルクアルカリ 岩質玄武岩は斜長石斑晶を欠くことが多い.

(海野 進,金山恭子)

3.1 研究史

母島, 父島を含む小笠原群島の研究史については, 海 野・中野(2007)による5万分の1地質図幅「父島列島 地域の地質」に詳細なまとめがある.ここでは母島列島 地域に関連した研究についてのみ述べる.

日本人による小笠原群島の近代的な地質調査・研究が 行われるようになったのは、小笠原の本格的な開拓統治 が始まった明治維新後である. 母島列島は熱帯性動物化 石の産出で知られ、早くから精力的な生層序学的研究が 行われた. 吉原 (1901), Yoshiwara (1902) が初めて母島 から貨幣石の産出を報告して以来,大型有孔虫化石,軟 体動物化石の記載等が進められた(矢部, 1920; Yabe, 1921 ; Yabe and Sugiyama, 1935 ; Yabe and Hatai, 1939 ; 半沢, 1925; Hanzawa, 1947, 1950). その結果, 父島 の南崎石灰岩は漸新世、母島の含有孔虫層は中期~後期 始新世であることが明らかにされた.しかし.第二次世 界大戦前後の日本軍による立ち入り規制やアメリカ軍に よる占領のため、小笠原研究は一時中断を余儀なくされ た. 1968年に小笠原諸島が返還されると文部省や東京 都による小笠原の自然環境調査団が派遣され、小笠原の 地形学的及び地質学的研究が再開された(浅海, 1969, 1970;岩崎・青島, 1970;神沼, 1970). 岩崎・青島 (1970), 氏家·松丸(1977), 松丸(1976), Matsumaru (1984, 1996)、向山・西(1992)、藤田ほか(1995)など によって有孔虫化石,軟体動物化石などの記載と生層序 学的研究が進められた. Matsumaru (1984) は貨幣石の形 態解析を行い, Hanzawa (1947) が固有種として記載した Nummlites boniensis \hbar^{s} , Nummlites atricus, N. atricusperforatus, N. perforatus に分類されることを明らかにし た.氏家・松丸(1977)は、有孔虫化石等を産出する堆 積物を下位より雄さん層、沖村層、石門層に分け、それ ぞれ整合で重なるとした.また、雄さん層は下位の自破 砕溶岩とは整合関係にあるとした.藤田ほか(1995)は, 母島沖港脇の沖村層の石灰質砂岩を浮遊性有孔虫化石帯 P11~P14にあたるとし、数百万年間にわたって火山 噴出物を挟在しないことから、火山活動終息後に水深 100~200 m 程度の静かな入り江に堆積したものと考え た.また、砂岩層の上位の石灰岩を浮遊性有孔虫化石帯 P14 に対比した. これに対して Matsumaru (1996) は沖 村層の石灰質砂岩層 (ロース石)を浮遊性有孔虫化石帯 P13~P14, その上位に整合的に重なる石門層の石灰岩 を P15 とした.

Kaneoka *et al.* (1970) は初めて小笠原群島の火山岩類 の K-Ar 年代を測定し,母島北港のかんらん石斜方輝石 単斜輝石安山岩岩脈について 40 Ma を得た(第 2.1 表). その後,Tsunakawa (1983) は母島の玄武岩及び安山岩か ら 30 ~ 9.6 Ma の K-Ar 年代を報告し,化石年代に比べ て明らかに若い放射年代を熱的擾乱によるものと考え た.その後 Ishizuka *et al.* (2006) によって母島東港の安 山岩から 44 Ma という Ar/Ar 年代が得られ,化石年代 と整合的な放射年代が示された.

半沢(1925),氏家・松丸(1977),Matsumaru(1996)は, 化石を含む地層の分布を明らかにした母島の地質概略図 を示したが,母島全体の層序区分や火山地質については 触れていない.母島全島の火山層序は海野ほか(1988) で報告され,その後,中島(1991 MS)らは詳細な地質図 を作成し,明治以来海底火山と考えられてきた母島に, 陸上で噴火・堆積した火砕流堆積物や溶岩流があること を明らかにした(中島,1991 MS;山本・海野,1992; 海野・石渡,2006;海野ほか,2009).

母島の岩石学的研究については黒田ほか(1981, 1982), 舟橋・黒田(1988), 山本・海野(1992), 矢嶋ほ $\mathfrak{H}(2001)$, Maehara and Maeda (2004), Kanayama *et* al. (2014) などがある. これらの研究により, 母島列島 及び離島の岩石はそれぞれ独立の本源マグマから分化し たソレアイト系列とカルクアルカリ岩系列の玄武岩~安 山岩からなり、後者はデイサイトを含むことが明らかに された.また、母島火山群の本源マグマは伊豆-小笠原 弧の第四紀フロント上の火山よりも希土類元素などに富 むマントルの融解によって生じたとされる (Kanayama et al., 2014). 一方, 伊豆 - 小笠原前弧域を特徴付ける火山 岩に無人岩があるが、周辺のドレッジや潜水艇調査など から、無人岩類は広く小笠原海嶺の基盤を構成している と考えられる (Ishizuka et al., 2006, 2011). 母島の南東 80 km の母島海山から無人岩がドレッジされている (Ishii, 1985;石井, 1986; Ishiwatari et al., 2006). また, 海洋研究開発機構の「しんかい 6500」によって嫁島南 西方の小笠原海嶺西側斜面上部から高 Mg 安山岩と含貨 幣石石灰岩が採集された(Bloomer et al., 2004; 石塚ほか, 2005 ; Ishizuka et al., 2006). 無人岩の火山活動は 4,800 万年前から4,500万年前まで続き、末期の低シリカ無人 岩マグマの活動は母島列島を形成した火山群の活動時期 と重複する (Kanayama et al., 2012). Maehara and Maeda (2004)は母島南西沖の向島から高 Ca 無人岩質の包有物 を持つ未分化島弧ソレアイトを報告し、両マグマの混合 があったとした.しかし、この包有物の全岩主要・微量 元素組成の特徴は無人岩とは異なり、母岩の玄武岩に類 似することから、同源捕獲岩の可能性が高い.

これらの小笠原群島や周辺海底の地質・岩石,年代, マグマ成因論についての知見をもとに,フィリピン海の 構造発達史とともに伊豆 – 小笠原 – マリアナ島弧の発生 と進化について論じられるようになった(Ben-Avraham and Uyeda, 1983; Seno and Maruyama, 1984;瀬野・丸山, 1985; Stern and Bloomer, 1992; Tatsumi and Maruyama, 1989;小山, 1991; Macpherson and Hall, 2001; Deschamps and Lallemand, 2002; 新妻, 2006; Ishizuka *et al.*, 2006, 2011).

3.2 母 島

母島列島の主体は溶岩及び火砕岩であり,層序的上位 には有孔虫化石等を含む火山性あるいは石灰質の砂岩・ 礫岩を火山岩中に挟在する.最上位は母島本島の礁性石 灰岩と南方の離島群を構成する溶岩・火砕岩類である. これらの地層は構造的斜交性,浸食面を覆う成層砂岩礫 岩の存在,浸食間隙を指示する上下の地層の年代差や岩 質の違いにより,下位から東台層,西浦層,石門層の各 層に分けられる(第2.1図).

3. 2. 1 東台層 (Hp, Ha, Hc)

命名 新称. 海野ほか (2009) の元地層中に新たに2層 準の浸食面間隙を認め,下の浸食面より下位の地層を東 台層とする.

模式地 母島東台

副模式地 母島西台

分布 母島猪熊湾と東港を結ぶ線より北の大半を占め, 一部は東崎湾に面した海食崖下に露出する.

層厚 1,300 m 以上

層序・岩相東台層は大部分が母島北部に分布し、下部 は弱~強溶結の火砕岩(Hp)とハイアロクラスタイト(Ha) の互層からなる.上部は安山岩及び玄武岩ハイアロクラ スタイト(Ha)と非溶結ないし弱溶結の降下火砕岩(Hp) からなる.

東台層の降下火砕岩類の大半は水冷火山弾や発泡度の 低いスコリアからなり,ハイアロクラスタイトと互層す ることから水中で噴火・堆積したと考えられる.ただし, 東山一帯に分布する上位の降下火砕岩類は淘汰がよく, やや発泡したスコリアと火山弾からなり,全体的に強く 酸化し,弱~強溶結していること,また明らかな水成堆 積物を挟在しないことから,陸上で噴火・堆積した可能 性がある.

母島の北西岸に沿って長浜から乾崎までのおよそ5

km にわたって、東台層最下部を構成する弱~強溶結の 降下火砕岩(Hp)と岩脈群(Dk)が海食崖に露出し、岩礁 をつくる(第3.1図A).弱溶結した火砕岩は、発泡度 が低くあまり酸化していない岩片や2~3%のやや扁 平な気泡を含み赤色~橙黄色のスコリアないし火山弾か らなる、火山弾は明瞭なガラス質急冷縁が発達し、中心 部に径数 mm 以下の気泡が集中し、紡錘状ないし溶岩 餅状の形態を有した水冷火山弾である(第3.1図B). 中溶結部ではこれらの岩片はレンズ状でゆるやかに波打 つように塑性変形し、少量の小気泡を含むことがある. しばしば灰色で発泡の悪い火山礫サイズ以上の岩片が, 酸化してピンク色~赤紫色になった火山灰基質中に埋も れていることがある. 強溶結部は板状ないし塊状の溶岩 体をなし、あまり酸化していないことが多い (第3.1図 A). 不均質でわずかに発泡した部分が散在し, 流理構 造を示すことがあり、中溶結した火砕岩に上下あるいは 側方変移することから, 強溶結した火砕岩であると判断 できる.

多くはほぼ水平あるいは南ないし南東に緩傾斜する成 層構造が発達するが、塊状無層理の岩相を挟在すること もある.降下ユニットは厚さ数10 cm ~数 m であるこ とが多く、弱~中溶結の場合は、淘汰が良く、火山礫か ら火山岩塊サイズの岩片を認めることができる.また、 厚さ1~20 cm の淘汰の良い粗粒火山灰ないし火山礫岩 層が斜交層理を示す、火砕サージ様の岩相が認められる (第3.1図A).

母島北端の西台では、降下火砕岩と互層する安山岩ハ イアロクラスタイト(Ha)が分布する. 径数~数10 cmの 多角形状の溶岩片と同岩質の粗粒火山砂~細粒火山礫基 質からなり、差し渡し数 m ~数10 m の塊状あるいは板 状溶岩を含む. 岩片の多くは発泡度2~3%以下で平 滑な断面で囲まれ、明瞭な細粒急冷縁を欠く. 径1 m を 超える岩塊では、やや丸みを帯びた輪郭を示し、細粒緻 密な急冷縁と表面から垂直に延びる柱状節理が発達し、 破断後に生じた冷却組織を示す. ハイアロクラスタイト 中の巨大岩塊の周辺では塊状無層理であることが多い が、岩体から離れるにしたがって層理が発達し、凝灰角 礫岩へと移化する.

北港東岸では、東台層上部を構成する含かんらん石斜 方輝石単斜輝石安山岩ハイアロクラスタイト(Ha)が分布 する.北岬では上に向かって開いた漏斗型の火口と火道 を埋めた塊状溶岩からハイアロクラスタイトに移化する 様子が観察できる(第3.2図).岩体の上端は植生に覆 われて観察できないが、上方に50m以上追跡でき、横 幅は60mを超える.岩体の下端は上部ではゆるやかに 岩体中央へ向かって傾斜し、下部ではほぼ垂直となって 幅35mの火道を形成する.火道の中央部には30~50 cm間隔の柱状節理がほぼ水平に延び、火道壁のハイア ロクラスタイトとの境界は急冷縁が発達し、暗色緻密の

第3.1図 母島北西海岸に露出する東台層最下部の弱~強溶結の降下火砕岩.
 (A)斜交層理を示す溶結凝灰角礫岩.

(B) 溶結した火砕岩中の火山弾.

細粒溶岩に漸移する. 急冷縁を含む溶岩クラストの一部 は厚さ数10 cm ~ 1 m, 幅2~5 mのレンズ状岩体と なって,漏斗型溶岩体から剥離し,岩体との間を同岩質 の細粒火山礫が充填している(第3.2 図 B). レンズ状 岩体の周囲は暗色細粒の急冷縁が囲んでいる. また,火 道壁から火口斜面に沿ったハイアロクラスタイト中には 漏斗型岩体と平行に粗粒の礫が集まったレンズや岩片が 成層する.

ハイアロクラスタイトの上位には,成層した凝灰角礫 岩(Hc)が東台の北斜面から海岸にかけて分布する.下 部は,同岩質の安山岩礫からなることから,下位のハイ アロクラスタイトの再堆積部と考えられる.上部は,赤 色酸化した粗粒火山灰〜細粒火山礫中に発泡の悪いスコ リアや火山弾を含む成層礫岩からなる.火山弾の中には 明瞭な急冷縁を有し,0.5×1.5mに達するものもある. 淘汰は悪いが,基質が酸化し,水冷火山弾を含むことか ら,水底に降下堆積した降下火砕物が再堆積した可能性 が考えられる。

成層凝灰角礫岩の上位には、東山一帯から東港にかけ てゆるやかに傾斜する弱溶結の降下火砕岩(Hp)が分布 する.一部に成層した凝灰角礫岩や火山礫岩からなる二 次堆積物が挟在する.この降下火砕岩は東山の山頂から 南西に下る尾根や東港の海食崖でよく観察できる(第3. 3図).降下ユニットは厚さ数10 cm ~1 m ほどで、径1 cm 以下から20~30 cm ほどのやや発泡した角ばった赤 橙色~暗赤色スコリアと火山弾からなる.弱溶結した降 下スコリア層の間に2~5 m ほどの間隔で灰色~暗赤色 の板状溶岩が挟まれており、不均質に分布する多孔質レ ンズの産状から、強溶結したアグルーチネートと判断さ れる.しかし、東山一帯には火口の痕跡らしい地形は認 められないことから、浸食によって失われたものと考え られる.東山南稜線上の標高190 m に、単斜輝石の5 mm

第3.2図 母島北岬の東台層ハイアロクラスタイトの火口を埋めた漏斗型の塊状溶岩.
(A)上方へ向けて大きく開いた上部で横幅60m以上,下部ではほぼ垂直で幅35mの火道を形成する.
(B)Aの白四角の近接写真.右手の岩体に平行に厚さ数10 cm~1m,幅2~5mのレンズ状溶岩体が配列する.

大斑晶を含む安山岩礫からなる赤色火山礫凝灰岩が露出 する. 基質が多く, 径 0.5 ~ 3 cm 大の亜角礫が点在し, まれに径 1 m を超える岩塊がある.火砕流堆積物の可能 性があるが,海岸付近では確認できず,分布は不明であ る. 直下には同岩質の溶岩がある.

放射年代 本層中から化石は見出されていないが,いく つか Ar/Ar 年代が得られている(第2.1表).東台層最 下部にあたる西台西岸の溶結火砕岩(斜方輝石単斜輝石 安山岩)(Hp)は45.3 Ma,同層上部の東港の安山岩ハイ アロクラスタイト(Ha)は44.0 Ma,東台北岸の凝灰角礫 岩(Hc)の安山岩礫は42.7 Maであり(第2.1表),火山 層序と調和的である.また,上位の石門層の化石層序や 放射年代とも矛盾しない.以上より,本層の形成年代は およそ45~43 Ma,中期始新世と考えられる.

3. 2. 2 西浦層 (Npf, Nc, Naa, Na, Nb, Ns)

命名 新称.海野ほか(2009)の元地層中に新たに認定 した2層準の不整合面の間の地層を,西浦層とする.

模式地 母島西浦

副模式地 母島東崎湾及び大崩湾

分布 母島の中央部を占め, 猪熊湾, 大崩湾, 東崎湾の 海食崖に広く露出する.

層厚 370 m 以上

層序・岩相西浦層は母島本島の中央部を占め,開析された東台層のハイアロクラスタイトを覆う成層礫岩(Nc)で始まり,主体は安山岩ハイアロクラスタイト(Na)と成層礫岩(Nc)からなり,両者の間に北部では石質火砕流堆積岩(Npf)が挟在し,西部から中央ではアア溶岩(Naa)が挟在する.母島東部~南部の西浦層は陸成層を挟まず,一部に玄武岩ハイアロクラスタイトを挟む安山

第3.3図 東山山頂付近に分布する東台層溶結
降下火砕岩.
(A)左上から右下へ傾斜する成層凝
灰角礫岩.
(B)弱溶結した火山礫岩.発泡度は
低いが全体的に酸化し、橙赤色~赤
紫色を呈する.

岩ハイアロクラスタイトと礫岩の互層からなり,最上位 に貨幣石などの化石を含有する砂岩及び細礫岩 (Ns)が ある. この含化石層は,氏家・松丸(1977)及び Matsumaru (1996)が大谷沿いに示した海成堆積物中の雄 さん層下部に相当するが,彼らの示したように沖港から 大谷沿いに連続的には分布せず,下流側のハイアロクラス タイト(Na)と石門層の赤色砂岩・礫岩(Sc)の間に挟ま れる.

東台層と西浦層の関係は猪熊湾や東崎湾の海食崖で観 察することができる. 猪熊湾東岸には, 灰白色から黄褐 色に変質した塊状溶岩とハイアロクラスタイトからなる 東台層(Ha)が露出し, 上位の西浦層(Nc)との境界は 浸食によって不規則に起伏し, 上位の礫岩がアバットす る. 礫岩の礫種は全て火山岩類で, 酸化程度, 変質の度 合いは様々である.石門下では東台層を覆う礫岩は,亜 円礫から円礫程度に円磨された中礫ないし大礫が厚さ 10~50 cm ほどの層をなし、1~2m 間隔で細礫から中 礫の基質中に配列する.礫同士は部分的に接触し、弱い 覆瓦構造が認められる.裏南京では、浸食によって削り 込まれた東台層のハイアロクラスタイト(Ha)の凹地を ゆるく西に傾斜した安山岩ハイアロクラスタイト(Na) と成層礫岩(Nc)が埋め、さらに安山岩及び玄武岩ハイ アロクラスタイト(Na,Nb)が累重する(第3.4図). 礫岩は厚さ50mを超え、上下2層からなり、上部層は 南へ向かって薄くなり、裏南京の崖下で尖減する.東台 層のハイアロクラスタイトを直接覆う下部礫岩は、やや 角が取れた亜角礫から亜円礫を主体とし、中礫から巨礫 サイズの安山岩礫からなる.赤紫色から赤色、暗灰色な ど様々な程度に酸化し、黄白色に変質した岩片を含む.

第3.4図 東台層と西浦層及び石門層の間の不整合.

(A)母島裏南京の海食崖に露出する東台層と西浦層の境界. 浸食によって削り込まれた東台層のハイアロクラスタイト(Ha)の凹地をゆるく西に傾斜した安山岩ハイアロクラスタイト(Na)と成層礫岩(Nc)が埋め, さらに安山岩及び玄武岩ハイアロクラスタイト(Nb)が累積する.

(B)大崩湾の乳房山下の海食崖に露出する石門層と西浦層の境界.成層した西浦層が削剥され、ゆるやかにうねった浸食 面を薄い赤色礫岩(Sc)(破線部)が覆う.

部分的に破砕しているが,パン皮状火山弾と判断される 放射状冷却節理の発達した大礫~巨礫もある.上部ほど 強く酸化した巨礫が多く,露頭全体が赤みを帯びる.上 部層は細礫~中礫の基質中に大礫が点在し,下半部に巨 礫が濃集する.あまり酸化した礫を含まず,灰白色を呈 する.

石門山から沖村にかけて, 礫岩 (Nc)の上位に火砕流 起源の凝灰角礫岩 (Npf)が分布する. 桑ノ木山から西浦 にかけて最も厚く発達し,西浦付近の都道北進線沿いに 好露頭がある.土石流起源の礫岩 (Nc)やハイアロクラ スタイト (Na)と互層し,地質図上は凝灰角礫岩,礫岩, ハイアロクラスタイトの3層を識別して図示した.凝灰 角礫岩 (Npf)は斜方輝石単斜輝石安山岩礫からなる非溶 結の石質火砕流堆積物で,上下方向の粒径変化や挟在さ れる小規模な二次堆積物から,複数のフローユニットか らなると考えられる.淡紅色から赤紫色に酸化した粗粒 火山砂ないし火山礫基質中に,同岩質の角が取れた火山 礫~火山岩塊が点在する (第3.5図A).径30~50 cm のパン皮状ないし紡錘状火山弾を含むこともある (第 3.5図B).桑ノ木山では,火山礫基質中に6×20 mの 巨大岩塊があり、1~1.5m間隔で入る柱状節理面に対 してさらに垂直に細かい柱状節理が発達している。拳大 以上の岩塊の割合は、場所によって1m²当たり1%以 下から 30% を超える.桑ノ木山から西浦までの南北 1.3 kmの範囲で、火砕流堆積岩中に含まれる最も大きな3 ~5個の火山岩塊の平均粒径は30~90 cm であるが. 南北方向で系統的な粒径変化は認められない. 岩片の発 泡度は5~10 vol.%で1 mm以下の気泡が多い.西浦 大沢橋の沖港寄り30mほどの道路脇に,幅5mの巨大 な吹き抜けパイプがある.パイプの中では火山灰以下の 細粒基質を欠き,数 cm ~ 30 cm ほどの火山礫~火山岩 塊が集積する.扁平な礫はパイプ壁近傍では壁面から内 部へ向かって傾斜し、パイプの中央部でほぼ水平に配列 することから、火山ガスが吹き抜けた後に残された粗粒 岩片がパイプ中に落下したものと考えられる.初生的な 火砕流堆積岩は概ね無層理塊状であるが、厚さ数 cm~ 2mの成層した粗粒火山砂・細粒火山礫層を挟在するこ とがある.また、側方もしくは上下方向に成層構造が発 達した凝灰角礫岩あるいは火山礫岩に漸移する.本火砕 流堆積物の南限は乳房ダム周辺であるが、これとほぼ同

 第3.5図 西浦大沢橋近くの石質火砕流堆積岩.
 (A)酸化した粗粒火山砂ないし火山礫 基質中に角が取れた同岩質の火山礫~
 火山岩塊が点在する.写真中央にハンマー.
 (B)火砕流堆積岩中の紡錘状火山弾.

層準と考えられる沖港東岸の水中土石流堆積物は,多数 のパン皮状水冷火山弾や酸化した火山岩片と基質を有す る(第3.6図). 堆積物は淘汰が悪く,大礫や巨礫に富 む厚さ1~2mの塊状無層理層と厚さ20~30 cmの成 層細礫岩の互層からなり,覆瓦構造は乳房ダムから南方 へ流下したことを示す.以上のことから,水底に流下し た火砕流が土石流に転化したものと考えられる.

沖村西方のハスベイから西浦にかけてと西浦の北岸で は、数枚のアア溶岩流(Naa)がハイアロクラスタイト (Na)を覆っているのが観察できる.西浦海岸から東に 上がる沢の上流には、前述の火砕流堆積物が分布するが、 アア溶岩と火砕流堆積物はともに石門層の砂岩礫岩(Ss) によって不整合で覆われており、沢中では両者の関係を 直接確認することはできない.しかし、大谷上流では火 砕流堆積物を成層砂岩礫岩(Ns)が覆い、その間にアア 溶岩 (Naa) が挟在する.

蝙蝠谷より南の海食崖では、下位のハイアロクラスタ イト(Na)と上位の含貨幣石砂岩礫岩(Ns)との間にほぼ 水平にアア溶岩(Naa)が累積する(第3.7図). 蝙蝠谷 の南では、およそ40mの間に7枚のアア溶岩が二次的 な堆積物を挟むことなく積み重なる.西浦海岸では、高 さ50mの崖に5枚の溶岩が累重し、北岸に沿っておよ そ20°で陸側に傾斜する安山岩アア溶岩と下位の安山岩 ハイアロクラスタイトの境界が観察できる(第3.8図). 西浦の湾口付近には最下位の無層理塊状のハイアロクラ スタイトが露出するが、その上位のハイアロクラスタイ ト中には厚さ5~6mの板状溶岩がアア溶岩中の板状溶 岩と平行に並び、同岩質の角礫で囲まれる.角礫は概し て平滑な破断面で囲まれ、脆性的に破砕したことを示 す.板状溶岩も角礫もあまり酸化していないが、厚い板

第3.6図 沖港東岸の成層凝灰角礫岩. 多数のパン皮状水冷火山弾や酸化した火山岩片と 基質を有することから,火砕流が海中に流下し, 土石流となって堆積したと考えられる.

第3.7図 蝙蝠谷の南の海食崖. およそ40mの間に7枚のアア溶岩が二次的な堆積 物を挟むことなく積み重なる.

第3.8図 西浦北岸の安山岩アア溶岩(Naa)と安山岩ハイアロクラスタイト(Na).
(A)北岸に沿って陸側に約20°で傾斜する5枚の安山岩アア溶岩が高さ50mの崖に露出する.海側,下位には安山岩ハイアロクラスタイトがあり,両者の境界がかつての汀線を示す.
(B)ハイアロクラスタイト中の厚い板状溶岩(汀線付近)の上下1m以内,特に上側の方がより酸化している傾向がある. 基質がパラゴナイト様物質に変質し,黄褐色~明黄色を呈することに注目.アア溶岩では板状溶岩の下側のクリンカーが酸化し、表面には粘弾性溶岩の引きはがしによって生じた棘状の破断組織の痕跡が見られる. 状溶岩の上下1m以内,特に上側のハイアロクラスタイトが酸化している傾向がある.基質を構成するガラス質片は黄褐色〜明黄色のパラゴナイト様物質に変質している.ハイアロクラスタイト中には,酸化した溶岩塊を含むクリンカーの数m大のブロックが包有されている. 一方,アア溶岩中の板状溶岩の下側のクリンカーは酸化し,表面には粘弾性溶岩の引きはがしによって生じた棘状の破断組織の痕跡が見られる.また,流理構造が発達した2~3m大のブロックが散見される.上位の溶岩ほど全体的に酸化し赤紫色を呈する.以上の観察から,上位の全体的に酸化したアア溶岩は乾陸上を流下したもので,その下位は汀線付近に流下したアア溶岩が水冷によりハイアロクラスタイト化したものと考えられる.

化石及び地質時代 本層上部の砂岩及び細礫岩からは Matsumaru (1996)により Nummulites aturicus, N. gizehensis, N. millecaput, N. pengaronensis, N. perforatus, Asterocyclina incisuricamerata, A. pentagonalis, A. stella, Orbitoclypeus kimurai, Discocyclina augustae, D. dispansa, Daviesina boninensis, Operculina schwageri などの大型有孔虫化石 が報告されている. 上位の石門層最下部が浮遊性有孔虫 化石帯 P13 (40.6 ~ 40.1 Ma) に対比されることから(第 3.2.3項), 本層は P13 かそれ以前と考えられる (Matsumaru, 1996). 火山岩類の放射年代が得られてい ないため,形成開始年代は不詳である. 東台層上部の最 も新しい放射年代 42.7 Ma 以降とすると,西浦層の形成 は 43 ~ 41 Ma 頃と考えられる.

3. 2. 3 石門層 (Sc, Spp, Sps, Sa, Sb, Ss, Sl)

命名氏家・松丸 (1977) が定義した雄さん層,沖村層, 石門層に,海野ほか (2009)の元地層の一部を含めて再 定義.

模式地 母島石門

副模式地 母島南京浜〜雄さん海岸

分布 母島東台~臥牛角,石門一帯,堺ヶ岳~乳房山ま での山稜部,蝙蝠谷~元地,東崎,母島南部,及び各離 島

層厚 430 m 以上

層序・岩相石門層は、浸食された西浦層を覆う砂岩礫 岩(Sc),軽石凝灰角礫岩(Spp),スコリア凝灰角礫岩 及び火山礫岩(Sps),安山岩及び玄武岩ハイアロクラス タイト(Sa,Sb)とそれらに挟在または上位に載る有孔虫 化石等を含む砂岩礫岩(Ss)及び石灰岩(Sl)からなる.

石門層と下位の西浦層の関係は、乳房山の南から堺ヶ 岳に至る山稜の東斜面の急崖で観察できる(第3.4図 B).乳房山の北500m~1kmの海食崖下部では、南 東に傾斜した西浦層の礫岩(Nc)とハイアロクラスタイ ト(Na)の互層に北傾斜の西浦層の礫岩(Nc)がアバット し、それらをハイアロクラスタイト(Na)が覆う、海食 崖の上部は、ゆるやかに傾斜した石門層の礫岩(Sc)か らなり、西浦層の構造を切って覆っている.

石門崎北岸の海食崖では,浸食された東台層を石門層 が直接覆っているのが観察できる.南傾斜の成層したハ イアロクラスタイト(Ha)の上によく成層した水冷火山 弾混じりの凝灰角礫岩(Hp)が重なり,その浸食面を厚 さ100 mを超える成層した赤色礫岩(Sc)が覆っている (第3.9図).赤色礫岩(Sc)は大きな斜交層理を示し, 下部及び上部に赤色酸化した亜角礫を多く含む層があ る.下位の東台層の凝灰角礫岩はかんらん石単斜輝石玄 武岩であることから,東港北岸の東台層(Hp)に対比で きる.一方,石門崎の南の石門下では,浸食されたハイ アロクラスタイト(Ha)を成層礫岩(Sc)が覆う.標高125 ~150 m付近で,ほぼ水平の巨礫岩層がゆるやかに傾斜 した下位の礫岩層を切り,その上に整合的に成層砂岩礫 岩,石灰岩が順次重なる.

臥牛角では,浸食により東台層の斜方輝石単斜輝石安 山岩ハイアロクラスタイト(Ha)の起伏に富んだ凹凸を 赤色礫岩 (Sc) が埋めて、その上位に白色軽石凝灰角礫 岩 (Spp), さらにハイアロクラスタイト (Sb) が載る (第 3.10図A).赤色礫岩は厚いところでは50mを超え, 層厚約2mの火山礫岩を境に成層構造の発達が悪い下部 層とよく成層した上部層に分けられる. 下部層はハイア ロクラスタイトの凹地を埋め, 不均質で, 安山岩の亜角 礫ないし角礫と火山礫サイズのスコリアの基質からなる (第3.10図B). ハイアロクラスタイトや酸化したスコ リア火山礫岩からなる1m~数m大のブロックが礫と なって混然とした堆積物をなす(第3.10図C). このよ うな産状から、火山体が崩壊して生じた土石流堆積物、 あるいは岩屑なだれ堆積物の基質相と考えられる。火山 礫岩層はまれに 0.8 m 大の火山岩塊を含む種々の安山岩 礫が覆瓦状構造を示し、よく成層する、その上に重なる 上部層最下部は厚さ10mのスコリア凝灰角礫岩からな り、下位のハイアロクラスタイトの高まりでは下部層を 欠き,直接上部層が覆っている.逆級化構造を示し,岩 片支持である.スコリアは数%程度の気泡を有し、赤 紫色に酸化した安山岩からなる. 径 10 cm を超えるスコ リアでは膨張により不規則な亀裂を生じ、荒れた破断面 を見せる.明瞭な水冷火山弾を欠くことなどから、陸上 噴火した降下火砕物が再堆積した崖錐堆積物と考えられ る. その上位には北におよそ 20°の傾斜で下位から厚さ 6mのやや成層した軽石凝灰角礫岩,厚さ5mの成層火 山礫岩, 2.5 m の成層礫岩の順で重なり, 後二者は北に 約10°傾斜のハイアロクラスタイトによって切られてい る. 軽石凝灰角礫岩は主として径1~15 cm のよく発泡 した軽石を主体とし,径 0.5~15 cm の石質岩片を含む. 軽石の表面は白色あるいは明黄色であるが、内部は酸化 して黄褐色~淡紅色を呈し,斜長石と単斜輝石の斑晶が 目立つ. 石質岩片は酸化や変質の程度が様々で, 斑状及 び無斑晶状の安山岩亜角礫ないし角礫である。粒径の異

第3.9図 石門崎の東台層と石門層間の不整合と石門層の赤色礫岩.

(A) 東台層の傾斜した水冷火山弾混じりの凝灰角礫岩(Hp)を石門層の成層した礫岩(Sc)が覆う. 丘の上に石門層の成層砂岩礫岩(Ss)が見える.

(B)石門層の石灰岩(SI)と成層砂岩礫岩(Ss)及び成層赤色礫岩(Sc).赤色礫岩は斜交層理を示す.

なる厚さ1~2mの淘汰の良い単層が積み重なる.その 上位の成層火山礫岩は径1~5 cmの淡赤褐色軽石から なり,径1~50 cmの石質岩片と軽石が平行に配列し, 厚さ数10 cm~1mで淘汰の良い単層が繰り返す.軽石 はやや発泡し、単斜輝石斑晶が目立つ安山岩である.

母島南部の裏高根とその対岸では、西浦層のハイアロ クラスタイト (Na)を覆う石門層の礫岩 (Sc) 中に、下部 に白色軽石凝灰角礫岩 (Spp)、上部に橙黄色スコリア火 山礫岩 (Sps) からなる 2 枚のテフラ層が挟在し、特徴的 な鍵層として東崎まで追跡できる (Kanayama *et al.*, 2014) (第 3. 11 図). 軽石凝灰角礫岩は、成層した厚さ 3.5 ~ 4.5 mの下部層と厚さ8mの塊状の上部層に分けられる. 下部層は二重級化構造を示す火山角礫岩~凝灰岩からなる.最下部1~2mは正級化を示す火山角礫岩で,最大径30 cmを超える安山岩塊を含む石質岩片が濃集する. 火山岩塊は角が取れ,酸化の程度の異なる岩片からなるが,放射状節理の発達した岩塊も少量認められる.基質は径数 cm 以下の軽石や石質岩片である.その上位は径17 cm 以下の軽石が濃集し,逆級化を示す.最上部は厚さ15 cm 以下の細粒火山礫を含む成層した凝灰岩である.その上位はおよそ2.5 m にわたって厚さ数 cm の細粒火山礫岩を挟在する軽石と石質岩片からなる厚さ10

第3.10図 臥牛角の不整合を覆う凝灰角礫岩.

(A) 浸食された東台層のハイアロクラスタイト (Ha) を覆って,石門層の赤色礫岩 (Sc),白色軽石凝灰角礫岩 (Spp),玄 武岩ハイアロクラスタイト (Sb) が覆う.

(B) 石門層の赤色礫岩(Sc)下部は凝灰角礫岩からなり, 深くえぐられた東台層のハイアロクラスタイト(Ha)に刻まれた 凹地を埋積する.

(C)赤色凝灰角礫岩(Sc)は数m大のハイアロクラスタイトや酸化したスコリア火山礫岩からなる1mから数m大のブロックが礫となって混然とした堆積物をなす.

~ 50 cm の火山礫岩層が繰り返す. 下部層は浸食され, 大きく削り込まれた凹地を埋積してやや成層した径 10 ~ 20 cm の白色軽石からなる上部層が堆積する. 径数 cm ~ 10 cm ほどの石質岩片が軽石間に点在する. 白色 軽石凝灰角礫岩の上位には,およそ 30 m の成層礫岩を 挟んで厚さ4 m の橙黄色スコリア火山礫岩がある. 下部 は最大径 40 cm の石質岩片が多く,上部は径 7 cm 以下 の橙黄色スコリアと少量の石質岩片からなり,ともに逆 級化を示す.火山礫岩の上位は,貨幣石化石を含む成層 礫岩を挟んでかんらん石単斜輝石玄武岩ハイアロクラス タイトが載る.

南京浜では、40.2 MaのAr/Ar年代(第2.1表)が得られている紫蘇輝石普通輝石安山岩ハイアロクラスタイト(Sa)が汀線付近に露出し、その直上にベースサージ 堆積物(Sps)が載る(第3.12図).ベースサージ堆積物 は厚さ7m以上で、粗粒凝灰岩〜火山礫岩の間に10〜 30 cm間隔で厚さ5 cm以下で細かい葉理が発達した細 粒火山灰層を挟み、斜交層理を示す。多くは径1 cm以 下であるが、最大3cmに達する明白色~橙黄色軽石を 含む. 堆積物は数 cm 以下の落差のある南西落ちの正断 層によって切られるが、これらの小断層は傾斜方向に数 10 cm 程度しか続かず、上盤側のブロックが部分的に欠 落している(第3.12図A). このような構造から, 堆積 時に未固結の堆積物を切って断層群が形成され、切られ た上盤側の板状ブロックが層理面に沿って滑り落ちたも のと解釈できる. 径5~30 cm の放出岩塊が散見され, 南西~南東方向に傾斜した弾痕が見られる(第3.12図 B). また, ベースサージ堆積物の示すデューン構造も 南西向きの流れを示す(第3.12図C).一方,ハイアロ クラスタイトはベースサージ堆積物の層理を変形させ, あるいは断ち切っており、差し渡し1~2mのベース サージ堆積物のブロックがハイアロクラスタイト中に取 り込まれている. ハイアロクラスタイトとの接触部では ベースサージ堆積物は赤紫色に焼かれて、硬くなってい る. また, 幅3~10 cm の粗粒凝灰岩脈がベースサージ 堆積物を切って延び、構造を乱している。 同様の火砕岩

第3.11図 裏高根の対岸に露出する石門層の礫岩中の白色軽石凝灰角礫岩(Spp)と橙黄色スコリア火山礫岩(Sps).
(A)深く浸食された西浦層の安山岩ハイアロクラスタイト(Na)にアバットして,(白色軽石凝灰角礫岩(Spp)及び礫岩(Sc)が覆う.礫岩には橙黄色スコリア火山礫岩(Sps)が挟在し,安山岩ハイアロクラスタイト(Sa)に覆われる.
(B)二重級化構造を示す火山角礫岩~凝灰岩.最下部1~2mは下部に正級化を示す石質岩片,上部に逆級化を示す軽石が濃集する.

脈はサージ堆積物のブロック周辺のハイアロクラスタイトの塊状溶岩中にも見られ,節理に沿った割れ目を充填する.火砕岩脈では節理壁と平行にラミナが発達し,径数mm以下の溶岩片が点在する.このような産状から,ハイアロクラスタイトは未固結で水を含んだサージ堆積物中に貫入したと考えられる.このサージ堆積物の上位に前述した軽石火山礫岩があり,さらに御幸之浜まで続く成層砂岩礫岩が載る.南京浜の 500 m 南にある雄さん

海岸北岸には、貨幣石化石を含む礫岩に挟まれたかんら ん石玄武岩降下スコリア凝灰角礫岩があり、サージ堆積 物とほぼ同層準と考えられる。降下スコリア凝灰角礫岩 は主に水冷された紡錘状火山弾や溶岩餅からなり、5~ 10%程度に発泡したスコリアが基質を充填する、火山 弾は酸化して橙黄色~暗赤色を呈する。

雄さん海岸の南岸では、降下スコリア凝灰角礫岩(Sps) の下位に貨幣石化石を含む成層礫岩(Sc)があり、最大

第3.12図 南京浜のサージ堆積物 (Spp).
(A)斜交層理の発達した粗粒凝灰 岩〜火山礫岩と細粒火山灰の互層 からなる.数 cm 以下の落差のあ る南西落ちの正断層 (矢印)によっ て切られ、上盤側のブロックが部 分的に欠落し、階段状の構造をつ くる.
(B)南西〜南東方向に傾斜した弾 痕(矢印).めり込んだ岩塊は抜け 落ちている.
(C)南京浜のサージ堆積物の デューン構造(前置層の極)(×西

デューン構造(前置層の極)(×西 岸,○東岸)と弾痕の軸(+)の下半 球投影. 概ね南西向きの流れを示 す. 厚さ100 cmの粗粒砂岩・細礫岩互層のレンズが挟在す る(第3.13 図).砂岩中には直径1 cm以下で縦横に数 cm~10 cmほど延びる棒状,あるいは「く」の字型の 砂岩柱が多数密集する.砂岩柱は母岩の層理を横切り, より白色を呈する鉱物に富むものもある.このような産 状から波打ち際から外浜環境で堆積した砂岩に産する多 毛類の生痕化石と考えられる(小竹信宏,私信,2011). 上下の成層礫岩中に貨幣石を多産すること,直上によく 酸化した降下火砕岩やベースサージ堆積物が載ることと 合わせて,浅海の堆積環境と考えられる.

化石・放射年代 石門層には,貨幣石に代表される底生・ 浮遊性有孔虫や貝,ウニ,石灰藻などの化石を多く産出 する石灰質あるいは火山性の堆積岩類 (Ss, Sc)がある. 氏家・松丸 (1977)はこれらの化石を含有する海成堆積 岩層を下位より,雄さん層,沖村層,石門層に区分し た. 雄さん層及び沖村層は西浦から南崎までの母島西岸 によく発達し,藤田ほか(1995)は母島沖村一帯に分布 する沖村層の石灰質砂岩(通称"ロース石"を含む)を 浮遊性有孔虫化石帯 P11 ~ P13(45.8~40.1 Ma)に対 比した. 一方, Matsumaru (1996)は浮遊性有孔虫化石帯 P13 (40.6~40.1 Ma),より上位の沖村層をP14(40.1~ 38.5 Ma)に対比し,最下位の雄さん層をP13以前とし た.沖村層の上位に整合的に重なる石灰岩最下部は沖港 脇の月ヶ岡神社下や西浦の三角岩に小規模な岩体があ り,浮遊性有孔虫帯のP14(藤田,1995)またはP15(38.5 ~35.2 Ma)(Matsumaru, 1996)とされている. Matsumaru (1996)によれば,石門地域にはより上位の浮遊性有孔 虫帯 P15~P17(38.5~33.8 Ma)に対比される石灰岩 が分布する.

第3.13図 雄さん海岸(南岸)の成層礫岩中の粗粒 砂岩・細礫岩互層(Sc)レンズ(A, B).
(B)砂岩・礫岩互層レンズ中の生痕化
石.直径1 cm以下で縦横に数 cm~10 cmほど延びる棒状,あるいは「く」の 字型の砂岩柱が密集する.

母島南部の南京浜では氏家・松丸 (1977)の雄さん層 の含貨幣石石灰質砂岩 (Ss) がベースサージ堆積物 (Spp) を覆う、サージ堆積物はその下の汀線付近に露出する安 山岩ハイアロクラスタイト(Sa)によって貫入されており、 ハイアロクラスタイトからは 40.2 ± 0.5 Ma という Ar/Ar 年代が得られている. Matsumaru (1996) によれば、上 位の石灰質砂岩 (Ss) は浮遊性有孔虫化石帯 P13 (40.6~ 40.1 Ma) 以前であることから, ハイアロクラスタイトの 貫入とほぼ同時期に堆積したことになる.一方,藤田ほ か(1995)は沖村周辺に分布する石灰質砂岩("ロース石") 及び石灰岩を浮遊性有孔虫化石帯 P11~ P14 とし、火 山噴出物をほとんど挟まないことから火山活動停止後の 静穏期に堆積したと考えた.しかし、P11~P12の年 代は母島列島の骨格をなす東台層及び西浦層の形成期 45~41 Maとほとんど重複することになり、比較的静 穏な堆積環境とは矛盾する.これらのことから石門層の 堆積は浮遊性有孔虫化石帯 P13 (40.6~40.1 Ma) より少 し前の 41 Ma 頃に始まり、少なくとも P17 (33.9 ~ 33.8

Ma) まで続いたと考えられる.

沖村以南の石灰質砂岩及び礫岩からは, Nummulites aturicus, N. gizehensis, N. millecaput, N. pengaronensis, N. perforatus, Asterocyclina incisuricamerata, A. pentagonalis, A. stella, A. asterodisca, A. hahajimensis, Orbitoclypeus kimurai, Discocyclina augustae, D. dispansa, Daviesina boninensis, Operculina schwageri, Alveolina elliptica, Eorupertia boninensis などの大型有孔虫化石が報告され ており、堆積環境が浅い陸棚や礁湖から陸棚斜面へと時代 とともにやや深くなったとされる(第3.14図)(Matsumaru, 1996). また, 最上位の石灰岩からは, Biplanispira absurda, B. mirabilis, Pellatispira orbitoidea, P. provalei, Fabiania cassis, Amphistegina radiata, Asterocyclina pentagonalis, A. stella, Discocyclina dispansa, Eorupertia boniensis などの 大型有孔虫化石を石灰藻 (Rhodophyta) やサンゴの層状 生礁とともに産出することから、サンゴ礁や陸棚であっ たとされている (Matsumaru, 1996).

第3.14図 御幸之浜の含貨幣石砂岩 (Ss)及び礫岩 (Sc). ハイアロクラスタイト (Sa)の直上に1.5 m 厚の火山性砂岩,4.7 m 厚の含礫石灰質砂岩,厚さ3 m 以上の中礫~大礫岩が重なる(A).礫岩中の貨幣石 Nummulites spp.のガモント(B)とアガモント(C).

3.3 母島離島

斑晶鉱物組合せ及び鉱物化学組成に基づいた解析によ ると, 裏高根対岸の母島本島の海食崖に露出する橙黄色 スコリア凝灰岩 (Sps),南京浜南岸の礫岩上部に挟在す る軽石火山礫岩 (Spp), 姪島北東海岸のスコリア凝灰角 礫岩 (Sps) 及び姉島北東岸の軽石火山礫岩 (Spp) は、 同じテフラ起源の可能性が高い(Kanayama et al., 2014). また、姪島、姉島、妹島のハイアロクラスタイトからは それぞれ 37.8 Ma, 40.6 Ma, 39.8 ~ 37.3 Ma の Ar/Ar 年 代が得られている(第2.1表). これらは化石を含有す る石門層の砂岩・礫岩~石灰岩下部が対比される浮遊性 有孔虫化石帯の P13 (40.6~40.1 Ma) から P15 (38.5~ 35.2 Ma)の年代範囲と一致する、火山岩類の全岩主要 化学組成では、母島離島は本島より未分化な化学組成を 示すものの,ほぼ同じ分化トレンド上で部分的に重複す る (Kanayama et al., 2014; 第3.5.5項). 以上のことか ら. 母島離島を母島本島の石門層に対比した.

3. 3. 1 向島 (Sa, Sb, Sc, Spp, Sps, Dk)

向島の地層は南東にプランジした向斜軸を持ち、南北 及び北東走向の断層で切られている. 島の西部では玄武 岩ハイアロクラスタイト (Sb)が、北部では成層した凝灰 角礫岩 (Sps, Sc), 塊状溶岩を伴う玄武岩質安山岩 (Sb) 及び安山岩ハイアロクラスタイト (Sa) が最下部を構成 し、120 m 以上の層厚を持つ. その上に厚さ 120 m の火 山弾を含む玄武岩スコリア凝灰角礫岩 (Sps) が載る(第 3.15 図 A, B). 軽石質砂岩礫岩層 (Spp) (向島軽石) が安井海岸ではスコリア凝灰角礫岩の上位にあるが、石 浜と桑ノ木鼻では安山岩ハイアロクラスタイト (Sa) (層 厚 75 m) に挟まれる. そのハイアロクラスタイトは玄武 岩質安山岩スコリア凝灰角礫岩 (Sps)(層厚 60 m)とハイ アロクラスタイト (Sa) (層厚 100 m 以上) に順次に覆わ れる. コペペ浜では北東走向の岩脈群 (Dk)がスコリア 凝灰角礫岩 (Sps) 及びハイアロクラスタイト (Sb) に貫入 している(第3.15図C).

3.3.2 母島南崎沖の小島嶼群(Sa, Sb, Sps, Dk)

母島本島南崎と平島との間に連なる鰹鳥島や丸島など の小島及び岩礁は、安山岩、玄武岩質安山岩及び玄武岩 の塊状溶岩を伴うハイアロクラスタイト(Sa, Sb)と成 層した凝灰角礫岩(Sps)からなる. 二子島南西の岩礁で は玄武岩ハイアロクラスタイトの下位に成層した火砕岩 (Sps)が露出する. 丸島瀬戸の北東側では北西走向,南 西側では北北東及び南北走向の断層が卓越する.

3. 3. 3 平島 (Sa, Sb, Sps, Dk)

平島の大部分は玄武岩質安山岩ハイアロクラスタイト (Sa)からなり、これを西部では玄武岩質安山岩、東部

第3.15図 向島の降下火砕岩と岩脈.

(A)小湊の成層スコリア凝灰角礫岩(Sps).
 (B) Aの凝灰角礫岩は急冷縁ガラスの発達した水
 冷火山弾(矢印)とやや発泡の良いスコリアからなる.

(C)スコリア凝灰角礫岩 (Sps)に貫入した北東走向の岩脈群(矢印 Dk).中央の岩脈は厚さ220 cm. コペペ浜にて.

3. 3. 4 姉島 (Sa, Sb, Sps, Dk)

南北に伸長した姉島に平行な北西走向の背斜軸と向斜 軸があり、約1,000 mの波長でゆるやかな起伏を示す. 北北西走向の断層が島の北西岸から南岸にかけて、南北 走向の断層が島の中軸に沿って延びる. またこれらに加 えて東西走向と南北走向の断層がそれぞれ北部及び南西 部に卓越する. 最下部は成層した玄武岩質安山岩ハイア ロクラスタイト(Sa)からなり、島の西岸及び北東岸には 玄武岩枕状溶岩 (Sb) 及び板状溶岩 (Sb) が分布する.ハ イアロクラスタイト(Sa) は層厚 160 m の玄武岩及び玄武 岩質安山岩からなる成層凝灰角礫岩 (Sps) (集塊岩、ス コリア凝灰角礫岩及びハイアロクラスタイト)によって 覆われる. 島の西岸中央部ではその上に枕状溶岩 (Sb) (層厚約 40 m),火山角礫岩及び凝灰角礫岩 (Sps)(主に 集塊岩, 層厚約 50 m) が載る (第 3.16 図). 島の北部に は玄武岩質安山岩ロベートシート溶岩 (Sa) があり、成 層凝灰角礫岩 (Sps) に覆われる. ロベートシート溶岩は 軽石質火山礫凝灰岩 (姉島軽石)及びシルト岩のブロッ クを捕獲している、北浦西側の海食崖では、ロベート シート溶岩 (Sa)と火山岩塊を含むスコリア火山礫凝灰 岩 (Sps) 中に幅約 60 cm の北北東走向の火砕岩岩脈があ り、上に向かって漏斗状に開いた割れ目火口へと続く (第3.16図).割れ目火口は、低発泡度の角張ったスコ リアと凝灰質シルト岩の薄層 (厚さ5~30 mm)からな る玄武岩質安山岩スコリア火山礫凝灰岩によって充填さ れている.

3. 3. 5 妹島 (Sa, Sps, Dk)

妹島は主に,集塊岩やスコリア凝灰角礫岩〜火山礫凝 灰岩などの降下火砕岩 (Sps)からなり,ハイアロクラス タイト (Sa)及び二次的に堆積した成層凝灰角礫岩を伴 う.これらの地層は北東及び北西走向の断層に切られ る.北東走向の岩脈が多数貫入している.妹島の地層 は,浸食面の存在から3層に分けられる.下部層(厚さ 55 m以上)は薄緑色の変質玄武岩集塊岩 (Sps)からなり, 島の北東部及び西部に断片的に露出する.中部及び上部 層は下部層の浸食面を覆って,またはアバットする.中 部層は,厚さ95 mの玄武岩及び玄武岩質安山岩の集塊 岩及びスコリア凝灰角礫岩〜火山礫凝灰岩 (Sps)からな り,島の東岸及び南岸の海食崖に露出する.東岸では中 部層の下位のハイアロクラスタイト(Sa)が露出する.上 部層は,ゆるく南に傾斜した中部層の構造を切って堆積 し(第3.17 図),島全体を広く覆う.厚さ250 m以上に

第3.16図 姉島の玄武岩枕状溶岩と割れ目火口.
(A)姉島北西岸,滝沢鼻の南.かんらん石普通 輝石玄武岩の小さな枕状溶岩が集積した層(Sb) を成層した凝灰角礫岩(Sps)が覆う.
(B)枕状溶岩の近影.写真の横幅は約1m.
(C)北浦西側の海食崖に露出する幅60 cm の北 北東走向の割れ目火口跡.割れ目は成層した玄武 岩質安山岩スコリア火山礫凝灰岩(Sps)によって 充填されている.

なる玄武岩及び玄武岩質安山岩の集塊岩,スパター及び 成層凝灰角礫岩 (Sps)からなる.上部層は北にゆるくプ ランジした北西走向の軸を持つ背斜及び向斜構造を示 す.

3. 3. 6 姪島 (Sa, Sb, Sps, Dk)

姪島は, 南西部の北西走向の断層によって主地域と南 西地域に分けられる. 南西地域は玄武岩ハイアロクラス タイト (Sb) (層厚 64 m 以上) とそれを覆う玄武岩集塊岩 (Sps)(層厚100m以上)からなる. 主地域は下位より, 玄武岩スコリア及び玄武岩質安山岩スコリアを含む凝灰 角礫岩 (Sps) (層厚 90 m 以上), 玄武岩質安山岩ハイア ロクラスタイト(Sa)(層厚約100m),安山岩ハイアロク ラスタイト(Sa)からなる。最上位の安山岩ハイアロクラ スタイトは島の北西部を占め、下位層に対してアバット する. 姪島西部の入り江の北岸のおよそ90mの断崖に, 最上位ハイアロクラスタイトを供給した岩脈が露出する (第3.18図). 岩脈は北東走向で下部は幅20m, 上部で 漏斗型に広がる断面を見せ、岩脈の両側にはよく成層し たハイアロクラスタイトが外側へ向かって傾斜し、割れ 目火口から溢流した溶岩がハイアロクラスタイトとなっ て山体斜面を転がり落ちた様子を見せている.

3.4 岩脈類 (Dk)

岩脈 (Dk) は北港, 臥牛角西方, 猪熊湾北岸に多く, 東台層の火砕岩 (Hp) やハイアロクラスタイト (Ha) に貫 入した北北西走向の岩脈群が見られる.また,石門の南 壁では東台層のハイアロクラスタイト (Ha) や石門層の成 層礫岩 (Sc) に数枚の岩脈が貫入する.多くがハイアロ クラスタイトや火砕岩と同岩質の安山岩からなるが,少 量のデイサイトも見られる.また,向島のコペペ浜には

岩脈

玄武岩岩脈が降下火砕岩に多数貫入している.安山岩や 玄武岩では厚さ3m以下の岩脈が多いが,まれに15~ 25mに達するものもある.北港は北北西走向の岩脈群 と平行に深く切れ込んだ入り江で,その両岸は脆性的に 破砕した岩脈の中に岩脈が繰り返し貫入したシート状岩 脈群をなしている.大沢海岸では,割れ目火口を埋積し た火道角礫岩が幅40m以上にわたって露出する.変質 した緑褐色斑状安山岩の角礫(径30~50 cm)を多数含 む粗粒凝灰角礫岩の間に径5~10 cmの無斑晶状安山岩 礫からなる凝灰角礫岩帯を挟む.ともに発泡度が低いス コリアと火山弾からなり,溶結している.火道角礫岩中 に数枚の岩脈が貫入している.また,猪熊湾北岸の堺崎 周辺には差し渡し200mになる塊状溶岩体があり,ハイ アロクラスタイトを伴わないことから,大きな貫入岩体 と判断した.多数の岩脈によって貫入されている.

母島本島では岩脈は北西走向が卓越するが,北東走向 を示すものもある(第3.19図).母島離島では,岩脈は 北北東から東北東走向が卓越し,母島本島の岩脈走向と は異なった傾向を示す.

離島の火山岩類が 41 ~ 37 Ma であるのに対して,母 島本島の主な岩脈群の母岩が 45 ~ 43 Ma の東台層であ ることから,Kanayama et al. (2014)は応力場の転換が あったと考えた.しかし,東台層に貫入した岩脈にも北 東走向のものがある.また,39.3 ~ 41.4 Ma という K-Ar 年代が得られている(Kaneoka et al., 1970)北港の安山岩 試料について,詳細な産状についての記載はないもの の,北港周辺には北北西走向の岩脈しか露出していない ことから,40 Ma は北北西走向の岩脈の年代と考えてよ いであろう.以上のことから,東台層と石門層で母島列 島の応力場が大きく変わったとは言いきれない.離島が それぞれ独立の小火山体を形成していること,母島本島 では北北西 - 南南東に伸張した山体と平行に岩脈が貫入 していることを考えると,岩脈の走向は火山体の形状に 支配された局所的な応力場を反映している可能性がある.

3.5 母島及び母島離島の岩石

3.5.1 一般的な特徴

母島列島の火山岩類中に4~35 vol.%含まれる斑晶の サイズは概して直径0.4 mm以上で数 mmに達し,しば しば累帯構造を示す(第3.20図).一方,直径0.1 mm ~0.4 mm以下の微斑晶は比較的均質で骸晶状組織を示 すことがある.ソレアイト系列の玄武岩は斑晶として, かんらん石,普通輝石,斜長石及びまれに紫蘇輝石を含 むが,カルクアルカリ岩系列の玄武岩では斜長石を欠 く.安山岩は斑晶として斜長石,普通輝石,紫蘇輝石の 他に,少量のかんらん石,磁鉄鉱を含むことがある.カ ルクアルカリ岩系列のデイサイトは斑晶として斜長石, 普通輝石,紫蘇輝石,磁鉄鉱の他にチタン鉄鉱を含むこ

第3.19図 母島本島(A)と離島(B)の岩脈走向の5°毎の頻度分布.

とがある.

玄武岩及び玄武岩質安山岩の石基鉱物は斜長石,単斜 輝石,かんらん石,磁鉄鉱からなる.全岩 FeO*/MgO - SiO2図(第3.21図)で区分されるソレアイト系列及 びカルクアルカリ岩系列ともに石基に紫蘇輝石を含むこ とがある.安山岩及びデイサイトの石基は,斜長石,普 通輝石,ピジオン輝石,紫蘇輝石,磁鉄鉱で,斜長石と 磁鉄鉱が卓越する.石基中に占める火山ガラスの割合は, 玄武岩より安山岩やデイサイトの方が高く,またハイア ロクラスタイトや岩脈よりも火砕岩(火山弾やスコリ ア)で高い.石基ガラスはパラゴナイト化するか粘土鉱 物に置換されている.

西浦層の火砕流堆積物や礫岩中の安山岩に含まれる斑 晶はしばしば破片状であり,かんらん石や輝石は周辺か らイディングサイト化し,石基鉱物は部分的に赤褐色の ヘマタイトに置換されている.

3.5.2 かんらん石普通輝石玄武岩

東台層では東港や桐浜,西浦層では裏南京,石門層で は擂鉢,南崎など母島南部と向島,姉島,妹島,姪島な どに降下火砕岩,ハイアロクラスタイト,岩脈,枕状溶 岩として産する.斑晶としてかんらん石,普通輝石及び 斜長石を含む.離島には斜長石斑晶をほとんど含まない ものも存在する.また,少量の紫蘇輝石斑晶を含むもの がある.

かんらん石斑晶は最大 13 vol.% 含まれる. 自形また は丸みを帯びた形を示し,周囲や割れ目に沿って粘土鉱 物に置換されている(第3.20図). 直径3 mm 以下でし ばしばスピネルを包有する. 単独で存在するか,複数の かんらん石と普通輝石が集斑状をなす.

斜長石斑晶は最大 22 vol.%含まれる. 直径 2 mm に達 し,きれいな自形結晶でガラス包有物を含むものがある. 斜長石をほとんど含まない一部の玄武岩には,全体的に 汚濁した不規則な形の斜長石が含まれる.

普通輝石は最大 7 vol.% 含まれ,集斑状の普通輝石は 直径 0.5 mm 程度,単独で存在するものは長径 2 mm に 達する.ガラスや斜長石を包有することがある.

石基は斜長石,単斜輝石,かんらん石,磁鉄鉱,ガラ スからなる.

3.5.3 かんらん石紫蘇輝石普通輝石玄武岩質安山岩 及び安山岩

母島列島で最も普遍的に存在し、ハイアロクラスタイ ト,降下火砕岩、火砕流堆積物、礫岩、岩脈として産す る.斑晶として、斜長石、普通輝石、紫蘇輝石、かんら ん石、磁鉄鉱を含む.玄武岩質安山岩は安山岩よりかん らん石斑晶に富む.カルクアルカリ岩系列の玄武岩質安 山岩及び安山岩は、融食され単斜輝石の微晶によって縁 取られた石英を含むことがある.また、まれにオパサイ ト化した角閃石を含む.

斜長石は直径2mmに達し, 32 vol.% も含まれること がある.ごくまれにアパタイトを包有する.単独で存在 するか, 普通輝石 (<1 mm), 紫蘇輝石 (<1 mm), 磁鉄 鉱 (<0.2 mm) とともにクロットを形成する. きれいな 自形を示すものと、外縁部に汚濁帯を有するものがあり、 前者は中心部のAn値が縁よりも高い正累帯構造を示し, 後者は逆累帯を示すことが多い(第3.20図B). 東台 層,西浦層,石門層で正累帯構造を持つ斜長石と逆累帯 構造を持つ斜長石が共存する岩石が普通に存在し、特に 母島本島の石門層安山岩ではほとんどがこのタイプの安 山岩で、この安山岩のほとんどがカルクアルカリ岩系列 の分化トレンドを示す.一方,正累帯の斜長石のみを含 むものは、母島本島においてはほとんどがソレアイト系 列である.離島ではソレアイト系列の玄武岩質安山岩で あっても、正・逆累帯構造を持つ斜長石が共存するもの がある.

かんらん石斑晶は最大4 vol.% 含まれ, 直径2 mm 以 下でほとんどが完全に粘土鉱物に置換されている. しば しば周囲を斜方輝石と斜長石の微晶で縁取られている.

3.5.4 磁鉄鉱紫蘇輝石普通輝石安山岩及びデイサイト

安山岩はハイアロクラスタイト,降下火砕岩,火砕流 堆積岩,礫岩,岩脈として母島本島に普遍的に産する が,デイサイトは東台層では衣舘に降下火砕岩として, 西浦層では大崩湾にハイアロクラスタイトとして限定的 に存在する.離島には妹島に,安山岩及びデイサイトが ハイアロクラスタイトとして存在する.斑晶として,斜 長石,普通輝石,紫蘇輝石,磁鉄鉱を含む.デイサイト はチタン鉄鉱を有することがある.

母島本島の安山岩及びデイサイトには最大22 vol.% の斜長石が含まれ,斜長石斑晶は直径2 mm以下で,ま れに集斑状組織を示す.多くが正累帯構造を示す(第3. 20 図C).母島本島では,このタイプの岩石の多くがソ レイアイト系列の分化トレンドを示す.一方,妹島の安 山岩及びデイサイトには斜長石斑晶が10 vol.%含まれ, 正累帯構造を示しガラスや単斜輝石を包有するものと, 逆累帯構造を示しかつ周縁部に汚濁帯を有するものが共 存する.これらの岩石はカルクアルカリ岩系列に属する.

普通輝石,紫蘇輝石,磁鉄鉱の径はそれぞれ 1.4 mm, 1.3 mm, 0.3 mm 以下で,ほとんどが集斑状をなす.

3.5.5 全岩化学組成

母島列島の火山岩類は、低カリウム系列から中カリウム系列の玄武岩からデイサイト(SiO₂ = 48 ~ 66 wt.%; 第3.1表)であり、第四紀伊豆 – 小笠原火山フロント沿いの火山岩より FeO*/MgO 比が低い(第3.21図).母 島本島と離島の火山岩類は、互いに独立した固有のソレ アイト系列及びカルクアルカリ岩系列(Miyashiro, 1974;

第3.20図 母島の玄武岩及び安山岩の顕微鏡写真.オープンニコル(A, C, E)とクロスニコル(B, D, F).
 (A, B)母島擂鉢のかんらん石普通輝石玄武岩(Sb).斜長石斑晶に部分融解して融食されたコアを持つもの(左)と清澄なものがある(右).
 (C, D)母島万年表近のかくらく万些乾輝万英通輝万安山岩(Sc), A, P回様に報公融解して融食されたコアを持つ40

(C, D) 母島万年青浜のかんらん石紫蘇輝石普通輝石安山岩(Sa). A, B同様に部分融解して融食されたコアを持つ斜 長石斑晶(上端)と清澄で正累帯した斑晶が共存する(中央).

(E, F) 母島臥牛角西方の紫蘇輝石普通輝石安山岩 (Ha). 斜長石斑晶は概ね清澄なものが多いが, 融食されたコアを包 有物に富む汚濁帯が取り巻くものもある. pl: 斜長石, aug: 普通輝石, ol: かんらん石, hyp: 紫蘇輝石.

第3.21 図 全岩 FeO/MgO-SiO₂図. 伊豆-小笠原弧の第四紀火山フロントは Taylor and Nesbitt (1998) 及び Ishizuka *et al.* (2007) による.

それぞれ Arculus (2003)の Medium-Fe 及び low-Fe series に対応する)の組成変化トレンドを示す.全岩化学組成 において,母島本島の東台層,西浦層,石門層のあいだ に明瞭な違いは認められない.母島離島の火山岩類は母 島本島と同じ分化トレンド上にあり,部分的に重複する が,より未分化な化学組成を示すものが多い.ソレアイ ト系列の火山岩は、カルクアルカリ岩系列より TiO₂, Al₂O₃, FeO*, Na₂O に富み, SiO₂ に乏しい傾向がある(第 3.21 図,第3.22 図).

母島離島には MgO 量が 12 wt.% に達する玄武岩が存 在するが,かんらん石・普通輝石斑晶と共存できるマグ マの液組成は MgO 量 8 wt.% 程度であることから, MgO 量が 8 wt.% を超える玄武岩はかんらん石の集積による ものと考えられる (Kanayama *et al.*, 2014).

微量元素のスパイダーダイアグラムは HFS (high field strength) 元素に乏しく LIL (large ion-lithophile) 元素に富 む典型的な島弧的パターンを示す.希土類元素パターン はわずかな左上がり (高 La/Yb 比), フラット (中 La/Yb 比), 左下がり(低 La/Yb 比)パターンを示すものがある.

母島列島の火山岩のうち La/Yb 比が低いものは,48 Ma の無人岩に先行する父島の島弧ソレアイト(ジョンビー チ火山岩類;海野・中野,2007)の La/Yb 比と同程度で あり,小笠原海溝西側斜面で得られた中央海嶺的玄武岩 (pre-arc basalt; Ishizuka *et al.*,2011)より明らかに高い(第 3.23 図).

母島列島火山岩類は南部第四紀伊豆 - 小笠原火山フロ ント (孀婦岩から北硫黄島, Ishizuka et al., 2007) と比較 して同程度の La/Yb 比, 低い Ba/Nb・Th/Nb・Pb/Nb 比 を示す.小笠原海嶺西端で得られた母島列島と同時期の 島弧ソレアイト及びカルクアルカリ岩 (Ishizuka et al., 2006; Haraguchi et al., 2008) は,母島列島火山岩類に比 べて高い Pb/Nb 比を持つ.母島列島で高 La/Yb 比及び 低 La/Yb 比を有する火山岩は,それぞれ高 Nb/Yb 比・ 高 Pb/Nb 比及び低 Nb/Yb 比・低 Pb/Nb 比を示す傾向が ある.

第3.1表 小笠原群島母島列島の全岩化学組成

母島 東台層															
試料名	採取地点	緯度 (°N)	経度 (℃E)	(wt%)	Si0 ₂	TiO ₂	$A1_{2}0_{3}$	Fe0*	MnO	MgO	Ca0	Na ₂ 0	K20	P205	Fe0*/Mg0
HH36-1C	剣先山南東	26.6448	142.1724		59.36	0.86	16.91	7.91	0.15	2.92	7.59	3.46	0.73	0.11	2.71
HH36-1A	剣先山南東	26.6434	142.1698		57.06	0.88	17.52	7.71	0.15	4.19	8.60	3.14	0.62	0.13	1.84
HH6010 A	臥牛角	26.7025	142.1643		53.01	0.56	19.16	7.54	0.15	6.31	10.59	2.35	0.27	0.06	1.19
07112106-1	臥牛角南	26.7003	142.1631		59.62	0.80	17.21	7.21	0.15	2.82	7.18	3.92	0.92	0.18	2.55
HH37-1	東台	26.6985	142.1437		57.95	1.14	18.67	7.05	0.11	3.00	7.87	3.73	0.33	0.15	2.35
HH30-3D	猪熊湾	26.6675	142.1477		55.04	0.86	18.29	9.12	0.11	5.53	7.94	2.61	0.42	0.09	1.65
HH4001D	桐浜東	26.6852	142.1567		58.92	0.96	17.19	7.82	0.18	2.97	7.09	3.71	0.99	0.17	2.64
HH33-1	衣山北東	26.6960	142.1421		52.64	0.82	17.62	8.10	0.17	6.98	10.78	2.51	0.29	0.10	1.16
07112104-4	西台西	26.7006	142.1284		59.31	0.89	16.54	7.63	0.17	4.21	7.37	2.86	0.88	0.13	1.81
HH6001 A	石門東	26.6809	142.1669		54.39	0.73	19.15	7.95	0.14	4.46	9.68	2.73	0.65	0.11	1.78
母島 西浦層	7.77														
試料名	, 採取地点	緯度 (°N)	経度 (°E)	(wt%)	Si0 ₂	TiO ₂	$A1_{2}0_{3}$	Fe0*	MnO	MgO	Ca0	Na ₂ 0	K20	P205	FeO*/MgO
HH32-1B	剣先山南東	26.6428	142.1707		56.99	0.97	18.58	7.30	0.14	3.06	8.78	3.34	0.64	0.19	2.38
HH12-2	桑ノ木山	26.6633	142.1524		59.95	0.65	15.91	6.27	0.14	4.87	8.46	2.95	0.69	0.11	1.29
HH26-4B	南京浜東	26.6358	142.1728		53.18	0.64	16.92	8.14	0.16	7.54	11.15	1.97	0.23	0.06	1.08
HH4003	大崩湾	26.6669	142.1624		53.01	0.70	15.24	8.38	0.16	8.52	10.68	2.61	0.59	0.11	0.98
HH4004	大崩湾	26.6642	142.1639		66.42	0.53	15.76	4.44	0.09	2.31	5.13	4.03	1.17	0.09	1.92
舟阜 石明屋	2														
試料名	" 採取地点	緯度 (°N)	経度 (°E)	(wt%)	SiO_2	TiO ₂	$A1_{2}0_{3}$	Fe0*	MnO	MgO	Ca0	Na ₂ 0	K20	$P_{2}O_{5}$	FeO*/MgO
HH32-3	剣先山南東	26.6416	142.1693		56.09	0.76	17.41	7.42	0.16	5.31	9.33	2.73	0.67	0.12	1.40
HH6002 B	臥牛角北	26.7039	142.1613		51.42	0.80	17.27	8.06	0.13	7.48	11.91	2.51	0.29	0.13	1.08
HH6002 C	臥牛角北	26.7039	142.1613		62.89	0.73	17.01	6.19	0.13	1.97	5.63	4.36	0.86	0.22	3.14
HH6011	東台北	26.7086	142.1548		54.94	0.76	19.18	7.73	0.14	3.74	9.54	3.05	0.70	0.21	2.07
HH4006	東崎	26.6594	142.1832		58.79	0.83	16.81	8.56	0.15	2.85	7.56	3.45	0.90	0.11	3.01
HH6009 A	東崎	26.6589	142.1855		54.76	0.61	18.01	7.82	0.15	5.84	9.56	2.65	0.53	0.07	1.34
07032833-1	南崎海岸	26,6099	142.1756		56.06	0.73	16.83	9.46	0.16	5.29	7.94	3.01	0.41	0.11	1.79
07032729-2	南京浜東	26.6313	142.1708		55.52	0.78	17.73	8.17	0.15	4.67	9.17	2.96	0.71	0.14	1.75
HH26-5	南京浜東	26,6286	142.1727		53.65	0.66	15.13	7.10	0.14	9.62	10.73	2.24	0.63	0.10	0.74
07032836-3	万年青浜	26,6239	142.1765		56.19	0.55	15.65	7.71	0.16	6.90	9.82	2.45	0.49	0.08	1.12
Suribachi-shi	i專高根南	26, 6159	142, 1811		53, 35	0.60	14, 99	8, 50	0.18	9.17	10.75	2.03	0.32	0.12	0.93
HH27-4	裏高根	26.6237	142.1805		53.51	0.70	18.06	7.65	0.17	6.13	11.04	2.29	0.33	0.13	1.25
丹良離良 乙	田園														
武料名	採取地点	緯度 (°N)	経度 (°E)	(wt%)	Si0 ₂	TiO ₂	A1203	Fe0*	MnO	MgO	Ca0	Na ₂ 0	K20	P205	FeO*/MgO
07112201-1	姉島	26.5620	142.1519		48.81	0.63	15.84	9.24	0.16	7.60	14.74	2.30	0.62	0.06	1.21
ANE-04	姉島	26.5447	142.1559		51.60	0.59	15.41	8.29	0.15	9.81	12.08	1.85	0.12	0.09	0.85
ANE-01C	姉島	26.3238	142.0922		53.39	0.66	16.05	8.18	0.15	7.17	11.71	2.15	0.34	0.20	1.14
ANE-01D	姉島	26, 3238	142.0922		54.71	0.69	16.36	8.26	0.11	5.91	10.91	2.39	0.57	0.09	1.40
07032944-3	平島	26, 5822	142.1612		48.45	0.83	16.39	9.73	0.15	6.72	14.90	1.97	0.58	0.28	1.45
HR-3C	平島	26, 5878	142, 1586		52.72	0.79	17.65	8,71	0.18	5.70	11.02	2.54	0.46	0.22	1.53
HR-04	平島	26 5877	142 1571		53 36	0.80	17.37	8 73	0.15	5 56	10.77	2 52	0.53	0.21	1.57
07032941-3	」	26 5660	142 2129		50.22	0.78	16.03	9.29	0.17	8 44	12 56	2 15	0.25	0.10	1 10
TM-044	林 自	26.5535	142 2063		52 46	0.64	13.03	7 00	0.14	7 92	11 91	4.06	3 10	0.35	0.88
IM-01R	<u></u> 休良	26.5540	142.2003		53 76	0.76	15.58	8 55	0.14	6.95	11.21	2 56	0.42	0.14	1.23
TR_01	<u></u> , 本 自	26.5509	142.2020		62 02	0.70	15.00	5 71	0.10	2 00	6 27	2.00	1 20	0.12	1.23
07022047 1	外面 五自	20.5500	142.2002		40.00	0.70	10.01	0.52	0.13	2.90 E 4E	10.10	9.44	0.47	0.13	1. 57
01033041-1 ME_01	八石	20.0942	142.1078		49.90	0.70	16.91	9.00	0.15	0.40	12.12	2.44	0.47	0.19	1.70
ME-UI	圧局	20.00/3	142.2204		00.20	0.70	10.73	9.09	0.10	8.01	12.00	2.00	0.32	0.13	1.13
ME-04	<u> </u> 広白	26.5659	142.2306		52.20	0.79	16.86	8.86	0.18	7.42	10.74	2.36	0.40	0.19	1.19
07032940-3) 広点	26.5734	142.2311		55.35	0.72	15.00	8.72	0.16	7.20	9.74	2.51	0.50	0.10	1.21
ME-05	姓 島	26.5706	142.2268		53.79	0.71	15.68	9.07	0.16	6.84	10.99	2.26	0.34	0.17	1.33
07032939-3	<u>姓</u> 島	26.5768	142.2318		56.84	0.84	16.19	8.15	0.15	4.83	9.19	2.90	0.80	0.13	1.69
MK-03C	向島	26.5982	142.1268		50.84	0.51	15.12	8.48	0.14	11.23	10.95	1.91	0.64	0.16	0.76
MK-09	向島	26.6031	142.1269		58.26	0.70	15.93	7.21	0.14	5.45	8.16	2.94	1.06	0.14	1.32
MK-01	向島	26.5981	142.1268		49.05	0.57	16.10	8.78	0.17	11.85	11.54	1.62	0.21	0.11	0.74
MK-03B	向島	26.5982	142.1268		49.37	0.66	17.01	8.09	0.13	10.40	11.93	2.02	0.28	0.11	0.78

第3.1表 (続き)

母島 東台層		AND THE MAN HE	(4) phr (0)	(at the (op)					51	-		-			
試料名	土 / 日	採取地点		経度 (°E)	(ppm)	Ni	Cr	V	Rb	Sr	Y	Zr	Nb	Cs	Ba
HH36-1C	東台層	剣先山南東	26.6448	142.1724		38	4	260	8.0	202	22.9	59	1.10	0.23	59
HH36-1A	 	剣先山南東	26.6434	142.1698		52	43	249	7.4	212	25.2	58	1.27	0.21	60
HH6010 A	東台層	臥牛角	26.7025	142.1643		55	143	241	3.2	225	17.1	32	0.69	0.10	31
07112106-1	東台層	臥牛角南	26.7003	142.1631		14	15	162	9.5	246	40.0	147	3.81	0.21	91
HH37-1	東台層	東台	26.6985	142.1437		30	3	211	3.8	262	33.7	79	2.60	0.15	34
HH30-3D	東台層	猪熊湾	26.6675	142.1477		54	24	280	3.4	156	22.6	30	0.82	0.15	35
HH4001D	東台層	桐浜東	26.6852	142.1567		12	2	127	8.6	220	30.4	80	2.07	0.18	73
HH33-1	東台層	衣山北東	26.6960	142.1421		76	106	258	2.5	230	20.6	31	1.45	0.09	43
07112104-4	東台層	西台西	26.7006	142.1284		17	28	222	8.6	203	28.7	120	3.31	0.05	141
HH6001 A	東台層	石門東	26.6809	142.1669		27	23	239	8.2	300	19.5	62	1.59	0.21	71
母島 西浦層															
試料名		採取地点	緯度 (°N)	経度 (°E)	(ppm)	Ni	Cr	V	Rb	Sr	Y	Zr	Nb	Cs	Ba
HH32-1B	西浦層	剣先山南東	26.6428	142.1707		36	5	232	9.1	267	31.9	70	1.78	0.27	70
HH12-2	西浦層	桑ノ木山	26.6633	142.1524		61	150	192	9.0	182	28.9	73	1.57	0.24	67
HH26-4B	西浦層	南京浜東	26.6358	142.1728		112	199	262	2.6	201	14.4	26	0.55	0.10	28
HH4003	西浦層	大崩湾	26.6669	142.1624		176	557	226	10.2	244	21.8	70	1.89	0.26	65
HH4004	西浦層	大崩湾	26.6642	142.1639		10	22	101	19.3	193	30.6	163	3.62	0.37	149
母島 石門層															
 武料名		採取地点	緯度 (`N)	経度 (°E)	(ppm)	Ni	Cr	V	Rb	Sr	Y	Zr	Nb	Cs	Ва
HH32-3	石門層	剣先山南東	26.6416	142.1693		59	96	238	7.3	219	58.3	60	1.73	0.20	73
HH6002 B	石門層	臥牛角北	26.7039	142.1613		133	430	252	1.9	348	23.7	52	2.10	0.08	60
HH6002 C	石門層	臥牛角北	26.7039	142.1613		5	2	84	10.4	229	46.0	177	4.54	0.20	98
HH6011	石門層	東台北	26.7086	142.1548		17	20	222	8.1	251	37.2	89	2.40	0.17	63
HH4006	石門層	東崎	26.6594	142.1832		9	7	261	8.8	203	24.0	60	1.10	0.22	59
HH6009 A	石門層	東崎	26.6589	142.1855		70	202	233	5.0	204	16.2	39	0.67	0.14	35
07032833-1	石門層	南崎海岸	26.6099	142.1756		43	11	216	4.2	218	20.4	54	1.14	0.11	33
07032729-2	石門層	南京浜東	26.6313	142.1708		6	51	255	7.8	228	23.5	66	1.97	0.19	56
HH26-5	石門層	南京浜東	26.6286	142.1727		265	677	218	8.0	233	17.7	59	1.33	0.21	59
07032836-3	石門層	万年青浜	26.6239	142.1765		101	278	206	6.0	172	18.1	51	1.08	0.18	44
Suribachi-shita	石門層	裏高根南	26.6159	142.1811		-	718	240	4.1	154	18.7	42	1.13	0.13	24
HH27-4	石門層	裏高根	26.6237	142.1805		67	77	208	6.0	232	39.2	41	0.92	0.10	28
母島離島 石門	層														
試料名		採取地点	緯度 (°N)	経度 (°E)	(ppm)	Ni	Cr	V	Rb	Sr	Y	Zr	Nb	Cs	Ba
07112201-1	石門層	姉島	26.5620	142.1519		77	288	303	4.6	187	15.5	22	0.40	0.10	32
ANE-04	石門層	姉島	26.5447	142.1559		_	479	266	1.5	174	18.9	40	0.76	0.060	16
ANE-01C	石門層	姉島	26.3238	142.0922		_	244	282	4.5	179	37.0	57	1.2	0.12	28
ANE-01D	石門層	姉島	26.3238	142 0922		_	210	263	12.3	182	17.3	53	1.2	0.34	43
07032944-3	石門層	平島	26.5822	142 1612		91	340	205	8.6	227	21.3	47	1.5	0.28	22
HR-3C	石門層	平島	26.5878	142 1586		_	600	007	5.8	228	22.8	66	2 1	0.14	40
HR-04	石田屋	「 曲) 亚自	26.5877	149 1571		_	194	207	6.3	226	25.1	62	2.1	0.13	15
07022041_2	工田屋	十一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	26.5660	142.1071		110	124	004	2.6	169	20.1	42	0.05	0.10	40
U1032941-3	つ门層 て明屋	外面 社自	20.0000	142.2129		110	437	284	0.4	102	15 9	40	0.95	0.10	14 E 4
IM-04A	11日暦 プ田屋	外局	20.0000	142.2003		_	326	395	9.4	105	10.2	20	0.05	0.059	04 99
IM-01B	11円暦 エ 田 屋	沐 局	26. 5540	142.2028		_	218	296	4.6	185	26.5	13	1.5	0.14	33
1K-01	行用 市 	<u>朱</u> 島	26. 5508	142.2082		-	27	125	9.4	128	31.5	112	2.9	0.23	69
07033047-1	 	丸島	26.5942	142.1678		68	81	360	4.9	253	20.6	39	0.97	0.13	21
ME-01	石門層	姪島	26.5673	142.2264		-	227	310	3.5	165	18.6	41	0.76	0.068	10
ME-04	石門層	姪島	26.5659	142.2306		-	319	262	4.6	170	35.6	71	1.6	0.088	20
07032940-3	石門層	姪島	26.5734	142.2311		114	287	235	5.8	145	24.6	61	1.3	0.15	36
ME-05	石門層	姪島	26.5706	142.2268		34	171	274	4.0	149	40.5	49	0.88	0.11	23
07032939-3	石門層	姪島	26.5768	142.2318		61	81	247	8.5	181	29.7	87	1.8	0.22	58
MK-03C	石門層	向島	26.5982	142.1268		-	571	239	5.8	177	13.8	28	0.67	0.14	24
MK-09	石門層	向島	26.6031	142.1269		-	179	218	13.0	206	26.5	102	2.6	0.28	89
MK-01	石門層	向島	26.5981	142.1268		-	758	334	4.4	206	19.3	42	0.96	0.11	28
MK-03B	石門層	向島	26.5982	142.1268		_	563	251	2.0	237	16.4	41	0.95	0.056	43

第3.1表 (続き)

La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Ta	Pb	Th	U
3.37	8.8	1.37	6.7	2.3	0.81	2.8	0.54	3.62	0.80	2.33	0.37	2.33	0.38	-	-	1.15	0.25	0.14
5.13	11.9	1.71	9.0	2.7	0.91	3.3	0.62	4.00	0.92	2.61	0.41	2.52	0.40	-	-	1.06	0.32	0.16
1.70	4.8	0.68	3.8	1.4	0.58	1.7	0.33	2.09	0.48	1.44	0.23	1.38	0.22	0.88	0.054	0.60	0.11	0.05
8.29	21.1	2.87	13.8	3.9	1.16	4.7	0.86	5.60	1.26	3.72	0.60	3.84	0.59	3.59	0.22	1.35	0.65	0.26
4.62	12.7	2.03	10.7	3.5	1.16	4.3	0.83	5.42	1.18	3.49	0.55	3.33	0.50	-	-	1.09	0.26	0.12
1.80	5.6	0.98	5.7	2.2	0.72	2.9	0.56	3.77	0.85	2.36	0.35	2.14	0.33	-	-	0.87	0.12	0.06
5.18	12.3	1.83	9.4	2.7	1.02	3.6	0.62	4.20	0.94	2.73	0.46	2.79	0.43	2.00	0.12	1.20	0.48	0.25
3.37	8.8	1.29	7.0	2.2	0.74	2.9	0.52	3.33	0.72	2.09	0.33	2.02	0.32	-	-	0.31	0.24	0.09
6.75	16.3	2.23	10.9	3.2	0.89	3.7	0.68	4.29	0.96	2.82	0.44	2.84	0.42	3.15	0.25	1.72	0.92	0.38
4.39	10.8	1.33	6.6	2.0	0.74	2.4	0.45	2.80	0.62	1.83	0.30	1.82	0.29	1.54	0.11	1.07	0.44	0.18
La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Ta	Pb	Th	U
6.21	12.7	2.05	10.4	3.1	0.97	3.6	0.69	4.56	1.02	2.99	0.48	2.99	0.46	-	-	1.54	0.46	0.24
4.77	11.3	1.69	8.3	2.5	0.75	3.1	0.62	3.89	0.92	2.73	0.42	2.74	0.44	-	-	1.03	0.42	0.22
1.78	4.9	0.78	4.0	1.4	0.51	1.6	0.33	2.19	0.49	1.46	0.22	1.41	0.21	_	_	0.68	0.13	0.07
4.37	10.4	1.43	7.4	2.2	0.77	2.6	0.46	2.96	0.68	1.94	0.33	2.00	0.32	1.81	0.12	1.25	0.58	0.24
7.63	17.4	2.47	11.5	3.0	0.83	3.6	0.63	4.03	0.90	2.57	0.42	2.75	0.43	4.12	0.25	1.89	1.27	0.42
La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Hf	Ta	Pb	Th	U
8.42	13.4	2.93	15.1	5.0	1.60	7.1	1.31	8.22	1.92	5.50	0.80	5.14	0.81	-	-	0.91	0.36	0.17
4.73	11.2	1.47	7.4	2.3	0.95	2.8	0.49	3.06	0.72	2.10	0.36	2.05	0.33	1.36	0.14	0.75	0.37	0.15
10.24	24.6	3.48	17.5	4.8	1.42	5.7	1.08	6.76	1.50	4.45	0.72	4.55	0.70	4.49	0.31	1.37	0.81	0.30
6.88	15.7	2.09	10.4	3.0	1.06	4.0	0.72	4.67	1.06	3.19	0.50	3.09	0.50	2.27	0.18	1.17	0.42	0.19
2.94	7.4	1.09	5.9	1.9	0.74	2.6	0.48	3.20	0.71	2.16	0.34	2.26	0.36	1.53	0.074	1.31	0.30	0.26
2.07	5.7	0.78	4.2	1.5	0.59	2.0	0.36	2.30	0.53	1.55	0.25	1.51	0.25	1.01	0.054	0.76	0.14	0.10
2.84	7.8	1.21	6.1	2.0	0.70	2.5	0.45	3.05	0.69	2.12	0.35	2.18	0.35	1.51	0.078	0.78	0.25	0.10
4.29	10.8	1.51	7.8	2.3	0.81	2.9	0.53	3.41	0.78	2.31	0.37	2.31	0.36	1.75	0.14	1.09	0.36	0.16
5.00	11.6	1.61	7.5	2.1	0.65	2.3	0.45	2.80	0.63	1.86	0.29	1.88	0.31	-	-	0.96	0.58	0.24
2.93	7.3	1.08	5.5	1.8	0.65	2.1	0.42	2.82	0.63	1.87	0.31	1.85	0.30	1.46	0.077	0.89	0.28	0.12
2.28	6.3	0.93	5.2	1.8	0.64	2.2	0.42	2.84	0.57	1.73	0.29	1.73	0.28	-	_	0.77	0.18	0.11
5.45	8.9	1.75	9.5	2.7	0.94	3.7	0.64	4.30	1.04	3.10	0.44	2.75	0.46	_	_	0.70	0.20	0.08
																	m 1	
La	Ce	Pr 0.52	Nd	Sm	Eu 0 40	Gd	Tb 0.21	Dy	Ho 0 E1	Er	Im	Yb	Lu	Hf	Ta	Pb	Th	0.00
1.07	5.4 5.2	0.00	3. Z	1.2	0.49	1.1	0.31	2.19	0.51	1.41	0.23	1.44	0.22	0.64	0.029	0.43	0.00	0.09
1.00	10.0	1.45	4.0	1.0	0.02	2.2	0.43	2.00	0.02	1.00	0.21	1.74	0.20	_	_	0.90	0.10	0.08
5.07 9.17	10.5	1.40	0.1	2.4	0.62	0.0	0.01	5.94 9.66	0.69	2.00	0.30	2.51	0.40	-	-	0.98	0.30	0.20
2.17	0.1 0.5	1.90	5. U 6. E	1.7	0.00	2.3 9.5	0.45	2.00	0.59	1.70	0.25	1.79	0.28	1 20	- 109	0.60	0.29	0.19
J. JO 4 DC	0.0	1.20	0.5	2.0	0.10	2.0	0.40	3.10	0.09	2.04	0.31	1.94	0.31	1.50	0.102	0.07	0.20	0.10
4.20	10.1	1.04	7.0	4.0 9.9	0.90	3.0	0.57	0.04 9.67	0.70	2.00	0.44	2.29	0.30	_	_	1.99	0.34	0.10
4.00	10.1	1.4/	1.0	2.3	0.90	3.U 9 E	0.54	3.07 9.50	0.01	2.00	0.47	2.20	0.37	1 20	-	1.0	0.32	0.10
2.05	0.J	1.07	5. 5 4. 4	2.0	0.72	2.5	0.51	3. 52	0.78	2.34	0.30	2.22	0.35	1.32	0.064	0.67	0.15	0.11
1.81	5.U	U. 78	4.4	1.0	0.00	2.0	0.38	2.40	0.01	1.00	0.24	1.48	0.24	-	-	0.62	0.13	0.20
3.04	9.2	1.30	1.0	2. Z	0.88	3.Z	0.60	J. 13	0.80	2.08	0.40	2.49	0.39	-	-	1. (0.25	0.14
4.29	12.2	1.89	10.0	3.2	0.91	3.9	0.76	4.73	1.06	3.20	0.51	3.40	0.52	-	-	1.50	0.39	0.24
3.21	7.8	1.15	6.0	2.0	0.70	2.4	0.46	2.98	0.67	1.97	0.31	1.97	0.30	1.11	0.065	0.62	0.21	0.12
1.50	4.8	0.76	4.5	1.7	0.69	2.3	0.43	2.80	0.63	1.79	0.31	1.83	0.29	-	-	0.81	0.10	0.08
4.39	10.6	1.59	8.7	2.6	0.86	3.8	0.68	4.11	0.94	3.06	0.67	2.89	0.46	-	-	1.3	0.37	0.21
2.77	8.3	1.28	6.8	2.3	0.74	2.9	0.54	3.65	0.81	2.42	0.39	2.39	0.37	1.67	0.091	1.1	0.19	0.11
3.45	5.9	1.13	6.5	2.3	0.78	3.5	0.62	4.01	0.97	2.92	0.44	2.75	0.45	1.39	0.071	0.94	0.15	0.08
3.91	10.7	1.70	8.7	2.8	0.83	3.5	0.68	4.47	1.02	2.96	0.47	3.02	0.47	2.28	0.162	1.3	0.33	0.19
1.75	4.5	0.66	3.6	1.3	0.52	1.8	0.32	1.83	0.42	1.30	0.19	1.20	0.19	-	-	0.50	0.14	0.13
5.96	14.7	1.93	9.5	2.7	0.88	3.3	0.63	3.81	0.85	2.67	0.43	2.58	0.41	-	-	1.6	0.57	0.29
2.51	7.0	1.05	6.0	2.2	0.86	2.6	0.51	3.27	0.72	2.05	0.31	2.05	0.33	-	-	0.92	0.19	0.14
3.41	9.1	1.29	6.4	2.0	0.79	2.4	0.44	2.77	0.59	1.76	0.28	1.66	0.25	-	-	0.89	0.30	0.14

4.1 地すべり堆積物 (TI)

小規模な崩壊地形や地すべり堆積物は海岸沿いに多数 認められるが、やや規模の大きなものは母島本島東岸の 大崩湾から東崎湾にかけて分布する. 石門の石灰岩塊 の南側面と東側面に沿って比高 50 m に達する滑落崖が 続き、崖下に崖錐堆積物が広がる(第4.1図A).特に 石灰岩体南端から石門山東斜面にかけての崩落崖は 1997年11月7日の台風25号による暴風雨の直後に発 生したもので、崩壊斜面は約12haであった(吉田, 1998). 崩壊した斜面は、南側は石門山下の変質したハ イアロクラスタイト、北東側は石門の石灰岩からなる部 分である. また、堺ヶ岳の稜線から石門にかけて1km 以上にわたって比高 50~100 m の馬蹄形滑落崖が発達 し、崖下には扇形の地滑り地塊が南北 500 m、東西 800 mに広がる(第4.1図B). 堺ヶ岳から南に延びる稜線 が崩落しているところでは、植生を載せた地塊が鉛直方 向に10mほど滑落し、延長60~80mほどの馬蹄形の 滑落崖が少なくとも3ヶ所ある. 2013年12月撮影の国 土地理院の空中写真や Google Map の衛星画像を見ると, 地滑り地塊上には植生が密生し、近年起きた崩壊でない ことはわかる。ただし、堺ヶ岳と乳房山の中間の稜線で は、幅50mにわたって崩壊し、崖下に植生のない新し い崩壊斜面が200mほど伸びている.

4.2 海浜堆積物及び谷底平野堆積物 (a)

母島列島で主な河川は、いずれも母島本島にある.北 ^{こうもだて} 港に注ぐ衣館川下流に沿って谷底平野堆積物(a)が分布 する.また、沖港に流れ込む大谷川と玉川などに沿っ て、礫・砂・泥からなる河川堆積物が小規模に分布する.

主としてよく円摩された中礫〜大礫からなる海浜堆積物(a)は、母島北部の大沢海岸、北港、東港、椰子浜、 精浜、長浜、猪熊湾、西浦、御幸之浜、万年青浜、向島の安井海岸や石浜などに分布する.一方、主として砂層からなる海浜堆積物は、母島の沖港、南崎、ワイビーチ、 向島の小湊及びコペペ浜、平島の北西海岸、姉島北浦などわずかである.向島のコペペ浜では、周囲の玄武岩岩脈や火砕岩からから洗い出された単斜輝石をかんらん石の結晶粒が波浪によって淘汰され、²⁰⁰⁰業砂^{**}と呼ばれる独特の緑の砂浜を形成する.単斜輝石粒は、概ね径0.5mm程度である. 母島南部の南崎やワイビーチでは, 貝殻片や有孔虫殻 などが集まった石灰質の白色海浜堆積物が発達し, 海側 にゆるやかに傾斜したビーチロックを形成する.

(海野 進)

第4.1図 母島石門から堺ヶ岳の滑落崖と地すべり堆積物.
 (A)海上から石門の滑落崖を望む.中央海岸沿いに広がる地滑り堆積物の上に右上の崖から崩れた新しい崩落物が載る.

(B)海上から堺ヶ岳東面の滑落崖を望む. 崖下手前,海岸線沿いの地滑り地塊の上に植生に覆われた崖錐堆積物が広がる.

— 36 —

(石塚 治)

母島列島周辺の海底地質については、地質調査所白嶺 丸による調査結果が「小笠原島弧南部及びマリアナ島弧 北部広域海底地質図」として公表され(湯浅ほか, 1982), また海上保安庁水路部による調査結果が, 沿岸 の海の基本図 (母島) (海上保安庁, 2000) として公表さ れている. それによると、小笠原諸島を含む小笠原海嶺 の高まりの上部は、陸上部に露出する古第三紀の地層と 同時期あるいはそれより若い前期中新世の堆積層に覆わ れる.一方小笠原諸島西側,小笠原トラフに面する急斜 面下部では、トラフ内に堆積するより新しい地層がア バットする形で分布する. この層からは淡褐色シルトが 採取され、含まれる浮遊性有孔虫の種類から時代はN 17~19(後期中新世~前期鮮新世)である(湯浅ほか, 1982). 地質構造上の特徴としては、小笠原海嶺には南 北あるいは北北西 – 南南東方向の雁行する背斜軸が認め られ、ゆるやかな褶曲構造が存在していると考えられ る.

2007年には、小笠原海嶺東斜面(すなわち伊豆小笠原

海溝陸側斜面) でドレッジによる岩石試料採取が行われ た(第5.1図). その結果,母島東方沖の水深約1,400 mの斜面から無人岩質の火山岩類が採取された(Ishizuka et al., 2011). この事実は,母島列島には父島列島や聟島 列島に分布する無人岩は産しないが,東方沖には存在す ることを示し,小笠原海嶺において火山岩類が帯状の分 布を持つことを示唆する(第5.1図).すなわち,より 古い時代(約4,800~4,400万年前)に活動した無人岩 が東側(より海溝に近い地域)に分布,母島列島に見ら れるより若い玄武岩~安山岩質火山岩が西側に存在す る. この分布は父島列島付近で観察された火山岩類の分 布とも調和的である(Ishizuka et al., 2006).

母島東方の海溝陸側斜面上には、母島海山と呼ばれる 高まりがあり、ここからはかんらん岩、はんれい岩、火 山岩等多様な岩石が採取されている(Ishiwatari *et al.*, 2006). Ishiwatari *et al.*(2006)は、小笠原海台の伊豆小 笠原弧への衝突と関連して上昇した前弧の地塊ではない かとしている.

第5.1図 母島列島周辺の海底地形と火山岩の分布. 無人岩と島弧ソレアイト及びカルクアルカリ岩類の分布範囲をそれぞれ破線と 点線で示す. D 29, D 30 は学術研究船白鳳丸によるドレッジ実施点. 岩石分布は Ishizuka et al. (2011) より引用.

6.1 断層

母島列島は急峻な海食崖に囲まれていることから,地 層の構造や断層を主に海食崖で確認することができる. しかしながら,内陸部は亜熱帯の密生した植生のため, 断層を露頭で追跡できるのはごく一部である.地質図上 には,見かけ落差10~100mほどの正断層を示したが, 明らかな逆断層ないし低角の衝上断層は確認できなかっ た.露頭面で落差を計測できるものについては,第6.1 図に示した.母島本島では,島の伸張方向と平行な北北 西-南南東に走る断層と,南北ないし東北東-西南西走 向の断層がある(第6.1図).後者には活断層と認定さ れるものも含まれ,北北西-南南東走向の断層が他の走 向の断層によって切られる傾向がある.姉島を除いて離 島では,北東-南西走向や北北西-南南東走向の断層が 多く,離島の形成年代が比較的新しい(石門層)ことと 調和的である.

活断層研究会は、母島中央部及び南部にそれぞれ1条 づつ活断層を認定している(貝塚·今泉, 1991). 一つは 沖港東岸の灯台南を東北東に走る谷に沿って伸びるもの で、北側の海岸段丘の平坦面が相対的に低くなってお り, 確実度 I に認定されている (af1; 第6.1 図). 沖港 の海岸では紫蘇輝石普通輝石安山岩ハイアロクラスタイ トを覆う成層礫岩のずれから、見かけ落差およそ15m である. 母島東海岸の裏南京の北の海食崖に現れる断層 に続くものと思われる. もう一つは, 沖村から北北東に 直線的に走る断層で、大谷から東に分かれて流れる支流 (ロース谷)の直線的な地形によく現れている (af2; 第 6.1図). 確実度はⅢとされる. 断層は乳房山東方の海 食崖によく露出する.狭い谷底には露頭がないため断層 を確認できないが、両岸で成層砂岩とハイアロクラスタ イトという層準の異なる地層が隣接することから、断層 と推定した. 見かけ落差は 10~15 m である.

6.2 褶曲

母島本島のほぼ中軸部を,島の伸張方向と平行に北北 西-南南東方向の開いた背斜があり,東崎湾以北では軸 が南にプランジする.同様にほぼ6km南西に向島の中 心と姉島を通る南プランジの背斜軸があり,波長およそ 6kmの褶曲構造があると考えられる.これらの褶曲軸 の他にも,姉島と妹島では波長の短いゆるやかな褶曲が 見られる.岩脈が多い妹島南西部では,鳥島対岸付近を 中心に背斜様構造が見られ,初生的な火山体の構造を反 映している可能性がある.同様に姪島西岸の入り江では 割れ目火道を中心として,その外側に向かってハイアロ クラスタイトが傾斜しており,割れ目火山の初生的な構 造を見せている.

母島の東台層から石門層までの全体の構造は概ね背斜 に調和的な地層の傾斜を示すが、静沢から西浦にかけて の海岸沿いではアア溶岩から上位の砂岩礫岩~石灰岩ま でほぼ水平であり、下位の地層とは非調和な構造をして いる. また, 西浦北岸のアア溶岩は一貫して南東傾斜で あり, すぐ東側の西浦層の礫岩や火砕流堆積物の分布が 全体として南西傾斜を示すことと相容れない. 火砕流堆 積物が西浦の谷から海岸にかけて最も厚いこと,西浦海 岸以南ではアア溶岩から上位の堆積岩類が水平であるこ とを考えると、元の地形を反映した堆積構造と解釈した 方がよい.西浦から沖港西端の鮫ヶ崎にかけて南南東に 延びる堆積盆があり、そこへ北東と北西から火砕流と溶 岩流が流れ込み、水平に砂岩礫岩が堆積したと考えられ る.一方,石門でも,石門層最上部の砂岩礫岩~石灰岩 は傾斜した下位層をほぼ水平に覆っていることから、石 門層上部のアア溶岩から上位の地層が下位層に対してア バットすると考えられる.

(海野 進)

第6.1図A 母島列島の褶曲軸,断層分布と見かけの落差(m).断層脇の単位のない数値は断層の傾斜(°)を示す.

(海野 進)

7.1 ロース石

²² ²⁴ ²⁴ ²⁴ ²⁴ ²⁵ ²⁵

7.2 石門~堺ヶ岳周辺の斜面崩壊

1997年11月7日に西北西方向へ進路をとった台風25 号は母島南方50kmを通過し、その日父島では348mm の日降水量を記録した.これは1987~1996年の10年 間の年平均降水量のおよそ30%にあたる.石門山の東 から石門南端にかけての斜面崩壊は、台風通過後の数日 以内に発生したと考えられるが、詳細な日時は不明であ る.崩壊跡は長さ430m、崩壊地の面積は約12haで あった(吉田, 1998).より小規模ではあるが,同様の 石門地域の崩壊は第二次世界大戦前にもあったらしい (吉田, 1998).崩壊堆積物は植生で部分的に覆われつつ あるが,石灰岩体の崖が南に張り出した直下は植生がな く,灰白色の石灰岩塊で覆われた斜面表層を覆う堆積物 の下位に黄褐色の堆積物が顔を出しており,斜面が不安 定な状態にあることがうかがえる(第4.1図A).

また,前述のように堺ヶ岳と乳房山の中間付近の稜線 が幅50mにわたって崩壊し,崖下に植生のない新しい 崩壊斜面が200mほど伸びている.

その他,母島南部でも主に東側の海岸線に沿って小規 模な崩壊地形が分布する.裏高根対岸北のヘリポート北 にある馬蹄形崩壊地では,1978年撮影の空中写真に比 べて2013年では南側の滑落崖の裸地化が進んでおり, やや崩壊が進行している.

これらの斜面崩壊が進行している地域,特に石門周辺 から堺ヶ岳の稜線沿いなどは台風等による豪雨等をきっ かけに大きく崩れる可能性もある.いずれも居住地や集 落からは離れており,直接人的・物的被害に及ぶケース は限られるであろうが,注意が必要である.

献

- Arculus, R. J. (2013) Use and abuse of the terms calcalkaline and calcalkalic. *Jour. Petrol.*, vol. 44, p. 929–935, DOI: 10.1093/ petrology/44.5.929.
- (1969) 小笠原諸島の地形地質.小笠原諸島自然景 観調査報告書,東京都, p. 33–78.
- 浅海重夫(1970) 小笠原諸島の地形地質. 続小笠原諸島自然 景観調査報告書,東京都, p. 84–117.
- Ben-Avraham, Z. and Uyeda, S. (1983) Entrapment origin of marginal seas. In Hilde, T. W. D. and Uyeda, S. (eds.) Geodynamics of the Western Pacific. Geodynamics Ser., AGU, Washington, D.C., p. 91–104.
- Bloomer, S. H., Kimura, J., Stern, R. J., Ohara, Y., Ishii, T., Ishizuka, O., Haraguchi, S., Machida, S., Reagan, M., Kelley, K., Hargrove, U., Wortel, M. and Li, Y. B. (2004) Petrochemical results for volcanic rocks recovered from SHINKAI 6500 diving on the Bonin Ridge (27°15' N-28°25' N) : submarine extension of Ogasawara forearc volcanism. *EOS Trans. AGU*, vol. 85, no. 47, Fall Meet., p. F1884.
- Cruden, D. M. (1991) A simple definition of a landslide. *Bull. Int.* Assoc. Eng. Geol., vol. 43, p. 27–29.
- Cruden, D. M. and Varnes, D. J. (1996) Landslide types and processes. In Turner, A. K. and Schuster, R. L. (eds.) Landslides: Investigation and Mitigation, Transportation Research Board Special Report, no. 247, National Academy Press, Washington, D. C., p. 36-75.
- Deschamps, A. and Lallemand, S. (2002) The West Philippine Basin: An Eocene to early Oligocene back arc basin opened between two opposed subduction zones. *Jour. Geophys. Res.*, vol. 107, B12, 2322, DOI:10.1029/2001JB001706.
- Dobson, P. F. (1986) The petrogenesis of boninite: a field, petrologic, and geochemical study of the volcanic rocks of Chichi-jima, Bonin Islands, Japan. *Ph.D Thesis*, Stanford University.
- Dobson, P. F., Skogby, H. and Rossman, G. R. (1995) Water in boninite glass and coexisting orthopyroxene: concentration and partitioning. *Contrib. Mineral. Petrol.*, vol. 118, p. 414–419.
- 藤田和彦・西 弘嗣・斉藤常正 (1995) ロース石の起源につ いての地質学的考察. 小笠原研究年報, no. 19, p. 53-59.
- 舟橋嘉浩・黒田 直(1988) 小笠原諸島,母島の高マグネシ ア玄武岩を伴う火山岩.静岡大学地球科学研究報告, no. 14, p. 35-46.
- Gradstein, F. M., Ogg, J. G., Schmitz, M. and Ogg, G. (2012) The Geologic Time Scale 2012. Elsevier, Amsterdam.
- 半沢正四郎(1925) 沖縄島及小笠原原島の含有孔虫岩に就い て. 地質学雑誌, vol. 32, p. 461-484.
- Hanzawa, S. (1947) Eocene Foraminifera from Hahajima (Hillsborough Island). Jour. Paleontol., vol. 21, p. 254–259.

- Hanzawa, S. (1950) Eccene foraminifera from Hahajima (Hillsborough Island) (2). Short Papers, IGPS., no. 1, p. 1–4.
- Harigane, Y., Michibayashi, K. and Ohara, Y. (2008) Shearing within lower crust during progressive retrogression: Structural analysis of gabbroic rocks from the Godzilla Mullion, an oceanic core complex in the Parece Vela backarc basin. *Tectonophysics*, vol. 457, p.183–196, DOI:10.1016/j.tecto.2008.06.009.
- Haraguchi, S., Ishii, T. and Kimura, J. (2008) Early TH and CA arc magmatism of middle to Late Eocene Age in the southern Ogasawara (Bonin) forearc. *Contrib. Mineral. Petrol.*, vol. 155, p. 593–618.
- 今泉俊文(2000) 小笠原群島の島々、貝塚爽平・小池一之・ 遠藤邦彦・山崎晴雄・鈴木毅彦(編)日本の地形4. 関東・ 伊豆小笠原,東京大学出版会, p. 286-291.
- Ishii, T. (1985) Dredged samples from the Ogasawara fore-arc seamount or "Ogasawara Paleoland" — "Fore-arc ophiolite". In Nasu, N., Kushiro, I. et al., (eds.) Advances in Earth and Planetary Sciences, p. 307–342.
- 石井輝秋(1986) 小笠原海域から採集されたドレッジ試料 -海底試料研究の一例-.月刊地球, vol. 8, p. 510-521.
- Ishiwatari, A., Yanagida, Y., Li, Y.-B., Ishii, T., Haraguchi, S., Koizumi, K., Ichiyama, Y. and Umeka, M. (2006) Dredge petrology of the boninite- and adakite-bearing Hahajima Seamount of the Ogasawara (Bonin) forearc: An ophiolite or a serpentinite seamount?. *Island Arc*, vol. 15, p. 102–118. DOI: 10.1111/j.1440-1738.2006.00512.x.
- 石塚 治 (2013) Application of laser-heating ⁴⁰Ar/³⁹Ar dating to the studies of subduction initiation process. 日本地球惑星科学 連合 2013 年大会予稿集,幕張, SGL40-01.
- 石塚 治・小原泰彦・Bloomer, S. H. · 木村純一 · Reagan, M. · Stern, R. J. · Taylor, R.N. · Li, Y.B. · 石井輝秋 (2005) 伊豆 小笠原弧形成初期におけるマグマ起源物質の時空変化につ いて、月刊地球, 号外 no. 52, p. 202–209.
- Ishizuka, O., Kimura, J.I., Li, Y.-B., Stern, R.J. Reagan, M.K., Taylor, R.N., Ohara, Y., Bloomer, S.H., Ishii, T., Hargrove III, U. S. and Haraguchi, S. (2006) Early stages in the evolution of Izu-Bonin arc volcanism: new age, chemical and isotopic constraints. *Earth Planet. Sci. Lett.*, vol. 250, p. 385–401.
- Ishizuka, O., Taylor, R.N., Milton J.A., Nesbitt, R.W., Yuasa, M. and Sakamoto, I. (2007) Processes controlling along-arc isotopic variation of the southern Izu-Bonin arc. *Geochem. Geophys. Geosyst.*, Q06008, DOI:10.1029/2006GC001475.
- Ishizuka, O., Tani, K., Reagan, M. K., Kanayama, K., Umino, S., Harigane, Y., Sakamoto, I., Miyajima, Y., Yuasa, M. and Dunkley, D. J. (2011) The timescales of subduction initiation and subsequent evolution of an oceanic island arc. *Earth Planet. Sci. Lett.*, vol. 306, p. 229–240.

- Ishizuka, O., Umino, S., Taylor, R. N. and Kanayama, K. (2014) Evidence for hydrothermal activity in the earliest stages of intraoceanic arc formation: implication to ophiolite-hosted hydrothermal activity. *Econ. Geol.*, vol. 109, p. 2159–2177.
- 岩崎泰頴・青島睦治(1970) 小笠原諸島の地質について.小 笠原の自然 - 小笠原諸島の学術・天然記念物調査報告書, 文部省・文化庁, p. 205-220.
- 海上保安庁(2000)沿岸の海の基本図 母島.
- 貝塚爽平・今泉俊文(1991) 小笠原諸島. 活断層研究会(編) [新編] 日本の活断層,東大出版会,東京, p. 190-191.
- 神沼克伊(1970) 小笠原諸島の地球物理学的概観と父島にお ける地震観測.小笠原の自然-小笠原諸島の学術・天然記 念物調査報告書,文部省・文化庁, p. 221-229.
- Kanayama, K., Umino, S. and Ishizuka, O. (2012) Eocene volcanism during the incipient stage of Izu-Ogasawara Arc: Geology and petrology of the Mukojima Island Group, the Ogasawara Islands. *Island Arc*, vol. 21, p. 288–316, DOI: 10.1111/iar.12000.
- Kanayama, K., Umino, S. and Ishizuka, O. (2014) Shallow submarine volcano group in the early stage of island arc development : geology and petrology of small islands south off Hahajima main island, the Ogasawara Islands. *Jour. Asian Earth Sci.*, vol. 85, p. 1–25, DOI:10.1016/j.jseaes.2014.01.012.
- Kaneoka, I., Isshiki, N. and Zashu, S. (1970) K-Ar ages of the Izu-Bonin Islands. *Geochem. Jour.*, vol. 4, p. 53–60.
- 小山真人(1991) 古地磁気からみたフィリピン海の構造発達 史. 地学雑誌, vol. 100, p. 628-641.
- 黒田 直・白木敬一・浦野隼臣(1981) Ⅱ-A-2 地質.小笠 原諸島自然環境現況調査報告書(3),東京都立大学,東京 都, p. 63-72.
- 黒田 直・白木敬一・浦野隼臣(1982) 父島母島付属島の地質. 小笠原諸島自然環境現況調査報告書,東京都立大学,東京 都,p.64-72.
- Macpherson, C. G. and Hall, R. (2001) Tectonic setting of Eocene boninite magmatism in the Izu-Bonin-mariana forearc. *Earth Planet. Sci. Lett.*, vol. 186, p. 215–230.
- Maehara, K. and Maeda, J. (2004) Evidence for high-Ca boninite magmatism from Paleogene primitive low-K tholeiite, Mukoojima, Hahajima Island group, southern Bonin (Ogasawara) forearc, Japan. Island. Arc, vol. 13, p. 452–465.
- 松丸国照(1976) 小笠原諸島, 父島と母島における第三紀大 型有孔虫生層序に関する予察的報告. 埼玉大学教育学部紀 要(数学・自然科学), vol.24, p.11–14.
- Matsumaru, K. (1984) Larger foraminiferal associations useful for the correlation of the Eocene and Oligocene sediments in the Ogasawara Islands, Japan, and an examination of Nummiltes boniensis HANZAWA. *Benthos* '83 2nd International Symposium on Benthic Foraminifera (Pau, April 1983), p. 415–422.
- Matsumaru, K. (1996) Tertiary Larger Foraminifera (Foraminiferida) from the Ogasawara Islands, Japan. Paleontol. Soc. Japan, Special Papers, no.36, 239 p.
- Miyashiro, A. (1974) Volcanic rock series in island arcs and active

continental margins. Amer. Jour. Sci., vol. 274, p. 321-355.

- 向山建二郎・西 弘嗣 (1992) 小笠原諸島・父島の地質年代. 日本地質学会第 99 年学術大会講演要旨, p. 195.
- 中島一則(1991MS) 小笠原諸島母島の火山地質. 静岡大学卒 業論文, 23 p.
- 新妻信明(2006) Ⅲ. プレート運動と中部地方のテクトニクス. 日本地質学会(編)日本地方地質誌4. 中部地方, 朝倉書店, 東京, p. 39-79.
- Reagan, M. K., Ishizuka, O., Stern, R. J., Kelley, K. A., Ohara,
 Y., lichert-Toft, J., Bloomer, S. H., Cash, J., Fryer, P.,
 Hanan, B. B., Hickey-Vargas, R., Ishii, T., Kimura, J., Peate, D.
 W., Rowe, M. C. and Woods, M. (2010) Fore-arc basalts and
 subduction initiation in the Izu-Bonin-Mariana system. *Geochem. Geophys. Geosyst.*, Q03X12, DOI : 10.1029/2009GC002871.
- 佐々恭二(2007) 地すべりダイナミックスの発展. 京都大学 防災研究所年報, no. 50A, p. 93-109.
- Seno, T. and Maruyama, S. (1984) Paleogeographic reconstruction and origin of the Philippine Sea. *Tectonophysics*, vol. 102, p. 53-84.
- 瀬野徹三・丸山茂徳(1985) フィリピン海のテクトニクス. 地学雑誌, vol. 94, p. 141–155.
- Stern, R. J. and Bloomer, S. H. (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. *Geol. Soc. Amer. Bull.*, vol. 104, p. 1621–1636.
- Taylor, R.N. and Nesbitt, R.W. (1998) Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. *Earth Planet. Sci. Lett.*, vol. 164, p. 79–98.
- Tatsumi, Y. and Maruyama, S. (1989) Boninites and high-Mg andesites : tectonics and petrogenesis. *In Crawford*, A.J., (eds.) *Boninites and Related Rocks*. Unwyn Hyman, London, p. 50–71.
- Tsunakawa, H. (1983) K-Ar dating on volcanic rocks in the Bonin Islands and its tectonic implication. *Tectonophysics*, vol. 95, p. 221–232.
- 氏家 宏・松丸国照(1977) 小笠原・母島の地質 とくに その層位学的研究. 国立科学博物館専報, no. 10, p. 5–18.
- Umino, S. (1985) Volcanic geology of Chichijima, the Bonin Islands (Ogasawara Islands). Jour. Geol. Soc. Japan, vol. 91, p. 505–523.
- 海野 進・白木敬一・黒田 直(1988) 小笠原諸島-世界初 のモホールに向けて-. 荒牧重雄・新妻信明(編),陸上 学術ボーリングワーキンググループ,陸上学術ボーリング 候補地集II, p. 35-61.
- 海野 進・石渡 明(2006) 小笠原諸島の地質-無人岩の成 因と海洋底テクトニクス.日本地質学会(編),日本地方 地質誌4.中部地方.朝倉書店(株),東京, p.292-299.
- 海野 進・中野 俊(2007) 父島列島地域の地質.地域地質 研究報告(5万分の1地質図幅).産業技術総合研究所地 質調査総合センター,71p.
- 海野 進・中野 俊・石塚 治・駒澤正夫 (2009) 20万分の 1 地質図幅「小笠原諸島」. 産業技術総合研究所地質調査 総合センター.
- 海野 進・金山恭子・石塚 治(2011) 海洋から島弧へ:小

笠原諸島はどのようにして生まれたか. 科学, vol. 81, 岩 波書店, 東京, p. 765-771.

- Umino, S., Kitamura, K., Kanayama, K., Tamura, A., Sakamoto, N., Ishizuka, O. and Arai, S. (2015) Thermal and chemical evolution of the subarc mantle revealed by spinel-hosted melt inclusions in boninite from the Ogasawara (Bonin) Archipelago, Japan. *Geology*, vol. 43, p. 151–154, DOI : 10.1130/G36191.1
- Wessel, P. and Smith, W. H. F. (1998) New, improved version of the Generic Mapping Tools released. *EOS. Trans. AGU*, vol. 79, p. 579.
- 矢部長克(1920) 日本の高等有孔虫殻を含む第三紀岩(二). 地質学雑誌, vol. 27, p. 293-300.
- Yabe, H. (1921) Notes on some Eocene Foraminifera. Sci. Rep. Tohoku Imp. Univ., 2nd ser., vol. 5, p. 97–108.
- Yabe, H. and Hatai, K. (1939) On an interesting Gastropoda from Haha-zima, Ogasawara Islands, Japan. Jap. Jour. Geol. Geogr., vol. 16, p. 209–212.
- Yabe, H. and Sugiyama, T. (1935) A new species of the genus Ranina (Lephoranina) from Hahazima, Ogasawara group (Bonin Islands), Japan. Jap. Jour. Geol. Geogr., vol. 12, p. 1–4.
- 矢嶋一仁・藤巻宏和・黒田 直(2001) 小笠原諸島母島に産

する初生的ソレアイトおよびカルク・アルカリ系列岩. 岩 石鉱物科学, vol. 30, p. 164–179.

- 山本純一(1993MS) 小笠原諸島, 母島のソレアイト, カルク アルカリマグマ系列. 静岡大学修士論文, 79 p.
- 山本純一・海野 進(1992) 小笠原諸島, 母島火山岩におけ るソレアイト, カルク・アルカリ系列. 地球惑星科学関連 学会合同大会日本火山学会固有セッション講演予稿集 1992 年春季大会, no. 1, p. 45.
- 吉田圭一郎(1998) 1997 年 25 号台風による小笠原諸島母島石 門地域の斜面崩壊について.小笠原研究年報, no. 22, p. 1-6.
- 吉原重康(1901) 小笠原島は富士火山線中に在らず. 地質学 雑誌, vol. 8, p. 380-389.
- Yoshiwara, S. (1902) Geological age of Ogasawara group (Bonin Islands) as indicated by the occurrence of Nummlites. *Geological Magazine*, N.S. Dec. 4, 9, p. 296–303.
- 湯浅真人・本座栄一・玉木賢策・棚橋 学・西村 昭・村上文 敏・石原丈実・西村清和・宮崎光旗(1982) 小笠原島弧 南部及びマリアナ島弧北部広域海底地質図, 1:1,000,000. 海洋地質図, no.18, 地質調査所.

QUADRANGLE SERIES, 1: 50,000 Ogasawara Shotō (20) No. 3

Geology of the Hahajima Retto District

By

Susumu UMINO****, Osamu ISHIZUKA** and Kyoko KANAYAMA******

(Written in 2015)

(ABSTRACT)

The Izu-Ogasawara (Bonin) Arc extends 1,500 km in length and 400 km in width and consists of the Shichito Ridge, Backarc-Nishinoshima Trough, Ogasawara (Bonin) Trough and Ridge, and Japan Trench from west to east. The Ogasawara (Bonin) Archipelago, comprising Mukojima Retto, Chichijima Retto and Hahajima Retto from north to south, lies between latitude 26°32'N and 27°44'N and at longitude 142°E on the shallow shelf on the Ogasawara Ridge. The Shichito Ridge is a post Oligocene volcanic ridge capped by the Quaternary volcanoes including Nishinoshima and the Volcano Islands. The Geological Map "Hahajima Retto" covers the Hahajima Island Group situated between latitude 26°31.5'N and 26°43.5'N and between longitude 142°06.00'N and 142°15.00'N. The Hahajima Retto (Island Group) is comprised mainly of Eocene volcanic strata capped by Eocene limestones, with a minor Quaternary sedimentary cover. The geology of the district is summarized in Fig. 1.

Fig. 1 Summary of the geology of the Hahajima Retto District.

^{*} Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University

^{**} Research Institute of Earthquake and Volcano Geology

^{***} Tottori Prefectural Museum

Paleogene

The Hahajima Retto, or the Hahajima Island Group, consists mainly of 45-40 Ma old submarine volcanic products intercalated with subaerially erupted and emplaced lava flows and pyroclastic rocks, which formed clusters of volcanoes under shallow seas. Volcanic strata in stratigraphically higher levels are interbedded with volcanic and calcareous sandstone and conglomerate including fossils such as foraminifers, and are capped by Eocene reef limestone on Haha Jima younger than 40 Ma. Meanwhile, shallow marine volcanic activity continued to the south of Haha Jima, which eventually formed the small islands south off Haha Jima. On the basis of structural obliquity, the presence of basal conglomerate covering large erosional surfaces, and differences in age and lithology, these volcanic and sedimentary strata on the Hahajima main island are divided into the Higashidai, Nishiura and Sekimon Formations, in ascending order. The Higashidai Formation is distributed in the northern part of Haha Jima, and is composed of moderately to strongly welded fall-out pyroclastic rocks intercalated with hyaloclastite in the stratigraphically lower portions. The pyroclastic rocks consist of water-lain volcanic bombs and poorly vesiculated and slightly oxidized pyroclasts, and are interbedded with hyaloclastite and conglomerate, suggesting that they were extruded and emplaced under water. The upper Higashidai Formation comprises non to moderately welded fall-out tephra overlain by hyaloclastite. The Nishiura Formation is distributed in the central portion of Haha Jima, and consists of bedded conglomerate underlain by eroded hyaloclastite of the Higashidai Formation in the lowermost level, and alternating beds of hyaloclastite, bedded conglomerate, and pyroclastic flow deposits, intervened by an lava in the stratigraphically higher levels. North-northwest-striking dikes are well developed in Kitako, west of Gagyukaku, and northern coast of Igumawan Bay in Haha Jima. The lower Sekimon Formation consists of red bedded conglomerate deposited on the eroded Nishiura Formation, a subaqueous pyroclastic flow deposit, fall-out tephras, a base surge deposit, sandstone and conglomerate. The upper portion comprises hyaloclastite and limestone. On the central and southern Haha Jima, hyaloclastite intruded into semiconsolidated base surge deposits and alternating beds of sandstone and conglomerate. The sandstone, conglomerate and limestone yield abundant fossils of foraminifers, coral algae, Mollusca and so on. The small islands south off Haha Jima are mainly composed of hyaloclastite and fall-out tephras and their reworked deposits. Numerous dikes intruded into these volcanic strata on Muko Jima and Imoto Jima. On the basis of pumiceous and scoriaceous deposits and radiometric ages, the volcanic strata of the southern islands are correlatable to the Sekimon Formation.

Andesite from the lowermost Higashidai Formation has been dated at 45.3 Ma, and andesite clasts in hyaloclastite and conglomerate from the upper Higashidai Formation gave 44.0–42.7 Ma by Ar-Ar dating. Calcareous sandstone and limestone of the Sekimon Formation are correlated with planktonic foraminiferal Zone P13–P14 and Zone P15–P17, respectively. Calcareous sandstone correlated with Zone P13 in the southern Haha Jima is intruded by andesite hyaloclastite with Ar-Ar age of 40.2 Ma. Also, Ar-Ar ages of 40.6–37.3 Ma were obtained on volcanic rocks from Imoto, Mei and Ane Jima islands.

Both the Hahajima main island and the south-off islands consist of arc tholeiitic and calc-alkaline andesites associated with basalt and dacite. Andesite carries phenocrysts of plagioclase, olivine, orthopyroxene, clinopyroxene and magnetite, with a trace amount of quartz in dacite. Tholeiitic basalt has phenocrysts of clinopyroxene, olivine and plagioclase, whereas calcalkaline basalt usually lacks plagioclase as a phenocryst.

Quaternary

Some of the sea cliffs surrounding the islands of Hahajima Retto develop collapsed features formed by falling of rocks and sliding and flowage of masses, and develop horseshoe-shaped scarps underlain by talus and slump deposits. Larger collapsed features are limited to high cliffs from Sekimon area down along the ridge to the summit of Mt. Chibusa on the eastern side of the Hahajima main island. Fifty-meter to 100 m high horseshoe-shaped scarps along the ridge from Mt. Sakaigatake to Sekimon develop a fan-shaped slump deposit spreading over 500 m north-south and 800 m east-west on the coast. The recent failure of high cliffs occurred in the Sekimon area, where limestone underlain by volcanic conglomerate in an area of 12 hectares collapsed to form talus deposits in November 7, 1997, either during or just following the heavy rain brought by Typhoon no. 25.

執筆分担

第1章	地形	石塚	治,	海野	進
第2章	地質概説			海野	進
第3章	古第三系	海野	進,	金山恭	志子
第4章	第四紀堆積物			海野	進
第5章	海底地質			石塚	治
第6章	地質構造			海野	進
第7章	応用地質			海野	進

文献引用例

海野 進・石塚 治・金山恭子(2016) 母島列島地域の地質.地域地質研究報告(5万分の1地質 図幅),産総研地質調査総合センター,46 p.

章単位での引用例

海野 進(2016) 母島列島地域の地質,第2章地質概説.地域地質研究報告(5万分の1地質図幅),
 産総研地質調査総合センター, p.4-8.

Bibliographic reference

Umino, S., Ishizuka, O. and Kanayama, K. (2016) Geology of the Hahajima Retto District. Quadrangle Series, 1:50,000, Geological Survey of Japan, AIST, 46 p (in Japanese with English abstract 2 p.).

Bibliographic reference of each chapter

Umino, S. (2016) Geology of the Hahajima Retto District, Chapter 2 Geological overview. Quadrangle Series, 1:50,000, Geological Survey of Japan, AIST, p. 4–8 (in Japanese).

地域地質研究報告(5万分の1地質図幅) 母島列島地域の地質 平成28年5月20日発行 国立研究開発法人 産業技術総合研究所 地質調査総合センター

〒305-8567 茨城県つくば市東1-1-1 中央第7

Geology of the Hahajima Retto District. Quadrangle Series, 1:50,000

Published on May 20, 2016

Geological Survey of Japan, AIST

AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, 305-8567, JAPAN

印刷所 岩見印刷株式会社

Iwami Printing Co., Ltd

©2016 Geological Survey of Japan, AIST