馬路地域 の 地質 0 英 俊 原 植木岳雪 °. 原 康祐 Ro ą, 0.2 令和2年 之產総研 ● ∮地質調査総合センター

地域地質研究報告 5万分の1地質図幅 高知(13)第65号 NI-53-22-15

馬路地域の地質

原 英俊·植木岳雪·原 康祐

令和2年

国立研究開発法人 産業技術総合研究所 地質調査総合センター

()は1:200,000図幅名

	13-54	13-55	13-56
	大 栃	北川	桜谷
	Odochi	Kitagawa	Sakuradani
	NI-53-28-2	NI-53-22-14	NI-53-22-10
	(未刊行, unpublished)	(2014)	(未刊行, unpublished)
<u>اللہ</u> 15,		甲浦 Kannoura	1:75,000 (1931)
00(13-64	13-65	13-66
) (] Ko	手 結 👘 👘 👘	馬路	甲 浦
och 93	Tei	Umaji	Kannoura
1	NI-53-28-3	NI-53-22-15	NI-53-22-7 • 11
	(未刊行, unpublished)	(2020)	(未刊行, unpublished)
	13-74	13-75	
	安芸	奈 半 利	
	Aki	Nahari	
	NI-53-28-4	NI-53-22-12·16	
	(未刊行, unpublished)	(未刊行, unpublished)	
		室 戸 Muroto	1:75,000 (1930)

5万分の1地質図幅索引図 Index of the Geological Map of Japan 1:50,000

馬路地域の地質

原 英俊*·植木岳雪**·原 康祐***

地質調査総合センターは、1882年にその前身である地質調査所が創設されて以来、国土の地球科学的実態を解明する ため調査研究を行い、その成果の一部として様々な縮尺の地質図を作成・出版してきた.その中でも5万分の1地質図幅 は、自らの地質調査に基づく地質図であり、基本的な地質情報を網羅している.

馬路地域は、室戸岬の北方、四国山地の南東部に位置し、高知県と徳島県の両県にまたがる山岳地域である。その大部 分に四万十帯白亜系~古第三系付加コンプレックスが、そして河川沿いにわずかに第四系が分布する。馬路地域の地質図 と報告書は、主に平成25年~29年度に行った野外調査と室内研究の成果に基づいて作成された。この調査及び作成にあ たって、四万十帯白亜系~古第三系付加コンプレックスについては原 英俊・原 康祐が、第四系については植木が担当 し、全体の取りまとめは原 英俊が行った。また本研究にあたり、以下の多くの方々のご協力を得た。四国森林管理局安 芸森林管理署から調査の際に、管理区域内への入林についての許可を頂いた。馬路村立馬路小中学校にはボーリング掘削 を許可して頂いた。平成29~30年度地質情報研究部門リサーチアシスタントとして、筑波大学の冨永紘平氏には、調査 への同行及び図面の一部を作成して頂いた。また元筑波大学の三橋俊介氏からは、未公表資料の提供を受けた。Elsevier 社からは、第3.19図及び第4.14図の転載許可を頂いた。以上の関係者及び関係機関の方々に、深く感謝いたします。 なお、本研究に用いた岩石薄片は、地質標本館室地質試料調製グループの製作による。

(令和元年度稿)

所 属

* 地質情報研究部門

^{**} 千葉科学大学(地質情報研究部門 客員研究員)

^{***} クニミネ工業株式会社(平成 27 ~ 28 年度 地質情報研究部門 リサーチアシスタント)

Keywords: regional geology, geological map, 1:50,000, Umaji, Kochi, Tokushima, Shikoku, Shikoku Mountains, Nahari River, Yasuda River, Ioki River, Ogawa River, None River, Shishikui River, Yanase Reservoir, Late Cretaceous, Paleocene, Eocene, Pleistocene, Holocene, Shimanto Belt, accretionary complex, Taniyama Unit, Hiwasa Unit, Mugi Unit, Higashigo Unit, Kaifu Unit, Naharigawa Unit, lower terrace deposits, alluvial terrace deposits, landslide deposits, valley floor deposits, flood plain deposits, Aki Tectonic Line, Fukase Fault, Inubo Fault, Kuki Fault, Nasa Fault, Shiofuka Fault, Ikumi Fault, Sugenoue Fault, Hiyadani Fault, Higashidanigawa Fault, Umaji Fault, Yasuda Fault, Muroto Flexure

目 次

第1章 地 形	1
第2章 地質概説	5
2.1 地質概略	5
2.2 付加コンプレックスにおける用語の定義と年代の扱い	8
第3章 四万十帯白亜系付加コンプレックス	······12
3.1 研究史及び概要	······12
3.2 谷山ユニット	13
3.3 日和佐ユニット······	18
3.4 牟岐ユニット	······24
3. 4. 1 主に混在岩からなる牟岐ユニット	······24
 4.2 主に千枚岩質泥岩からなる牟岐ユニット	
3.5 釈迦ヶ生ユニット	
3. 6 産出化石	
 7 砂岩組成と砕屑性ジルコン年代	37
第4章 四万十帯古第三系付加コンプレックス	40
4.1 研究史及び概要	40
4.2 東川ユニット	41
4.3 海部ユニット	44
4.4 奈半利川ユニット······	49
4.5 産出化石	55
4.6 砂岩組成と砕屑性ジルコン年代	58
第5章 四万十帯付加コンプレックスの地質構造	61
5. 1 断 層	61
5. 1. 1 安芸構造線	61
5. 1. 2 ユニット境界となる衝上断層	65
5.1.3 ユニット内部の衝上断層······	66
5. 1. 4 胴切断層	67
5. 2 屈 曲	68
第6章 第四系······	69
6.1 概要及び研究史	69
6.2 低位段丘堆積物	69
6.3 沖積段丘堆積物	69
6.4 崩壞堆積物	76
6.5 谷底低地堆積物	77
6.6 氾濫原堆積物及び現河床堆積物······	77
6 7 埋立地	77

	7.	1	自务	然災害·······	78
	7.	2	資源	原地質	78
	7.	3	鉱	泉	78
	7.	4	名	勝	78
5	大	献·			31
A	Absti	rac	t		38

図・表目次

第1.1図	馬路地域周辺の地形概略図	·····2
第1.2図	馬路地域の主要山地,河川及び行政区分	3
第1.3図	山地地形と峡谷・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
第2.1図	四国東部,四万十帯付加コンプレックスの分布とユニット区分	5
第2.2図	馬路から北川地域における四万十帯付加コンプレックスの地質総括図	6
第2.3図	馬路地域の四万十帯付加コンプレックスの地質概略図	7
第2.4図	馬路地域の四万十帯付加コンプレックスの地質体対比	8
第2.5図	砕屑性ジルコン U–Pb 年代の評価	10
第3.1図	谷山ユニットのルートマップ	14
第3.2図	谷山ユニットの岩相	15
第3.3図	谷山ユニット構成岩相の顕微鏡写真	16
第3.4図	谷山ユニットの柱状図(見かけの層序)	17
第3.5図	日和佐ユニットのルートマップ	19
第3.6図	日和佐ユニットの岩相	20
第3.7図	日和佐ユニット構成岩相の顕微鏡写真	······21
第3.8図	日和佐ユニットの柱状図 (見かけの層序)	······22
第3.9図	主に混在岩からなる牟岐ユニットのルートマップ	25
第 3.10 図	主に混在岩からなる牟岐ユニットの岩相	26
第 3.11 図	主に混在岩からなる牟岐ユニット構成岩相の顕微鏡写真	······27
第 3.12 図	牟岐ユニットの柱状図(見かけの層序)	29
第 3.13 図	主に千枚岩質泥岩からなる牟岐ユニット, 釈迦ヶ生ユニット, 東川ユニットのルートマップ	31
第 3.14 図	主に千枚岩質泥岩からなる牟岐ユニットの岩相	32
第 3.15 図	主に千枚岩質泥岩からなる牟岐ユニット構成岩相の顕微鏡写真	33
第 3.16 図	釈迦ヶ生ユニットの岩相	34
第 3.17 図	釈迦ヶ生ユニット構成岩相の顕微鏡写真	34
第 3.18 図	釈迦ヶ生ユニットの柱状図 (見かけの層序)	35
第 3.19 図	四万十帯白亜系付加コンプレックスから産出する白亜紀放散虫化石	36
第 3.20 図	四万十帯白亜系付加コンプレックスの砂岩組成	37
第 3.21 図	四万十帯白亜系付加コンプレックスの砕屑性ジルコン U–Pb 年代分布	
第4.1図	東川ユニットの岩相	42
第4.2図	東川ユニット構成岩相の顕微鏡写真	43

7 図 8 図 9 図 1 図 2 図	せき止め湖堆積物の露頭写真… 樫地川の谷底低地の遠望写真… 現河床堆積物の遠望写真… 表層崩壊及び深層崩壊の写真… 北川村平鍋及び小島の深層崩壊の遠望写真…	75 75 76 76 79 80
7 図 8 図 9 図 1 図 2 図	せき止め湖堆積物の露頭写真 樫地川の谷底低地の遠望写真 現河床堆積物の遠望写真 表層崩壊及び深層崩壊の写真 北川村平鍋及び小島の深層崩壊の遠望写真	75 75 76 76 79 80
7 図 8 図 9 図 1 図	せき止め湖堆積物の露頭写真 樫地川の谷底低地の遠望写真現河床堆積物の遠望写真 表層崩壊及び深層崩壊の写真	75 76 76 79
7 図 8 図 9 図	せき止め湖堆積物の露頭写真 樫地川の谷底低地の遠望写真 現河床堆積物の遠望写真	
7図 8図	せき止め湖堆積物の露頭写真 樫地川の谷底低地の遠望写真	75 76
7図	せき止め湖堆積物の露頭写真	
υд		10
6 🖾	深層崩壊地の地形分類図	
5 図	崩壊堆積物の露頭写真	74
4 図	段上堆積物の露頭与具	73
3図	段上堆積物の柱状図	72
2区	検丘堆積物の区分と編年	72
1区	毎四ポリ地県世直図 9.5世建版 □ 戸口 - 「「「」」	
4 凶 1 団	へ 小町 宿 」	
2区	町唐い路駅子長 十曜断層下般の市田コニットに発達すて小断屋	
4 년 2 団	町宿 シ 安カ	
1凶	河町地域>ノ地具港垣	
1回	ロカエルロガーボロ加コマノレフラへの中国はマルコマキ10万年	
16 図	ロカールロホーボロ加コ・ノレノノハシジロ相风	
15 図	四刀 甲口 ホニボ 加コマノレソフ へがつ 座山 り る 白	
14 回	知利 巴展駅本1416で 97月市	
12区		54
11 図	余干村川ユーットの岐断した砂石泥石 Δ増及 び泥石	- 4
11 図	宗十州川ムーット陣成石州の頭傾蜆与具	
9区	示十小川ムーットの砂石及い砂石池石互厝 本半和川ココットま式出現の距池途定直	51 51
0 区 0 回	☆十四川ムーツトのルートメツノ	
1 凶 8 団	19-11	
0 凶 7 団	1997	48
5 区 6 団	(ψψ→-ノトッ石11)	47
4区	御歌ユーットと牛岐ユーットのルートマック	43
4 100		44
1 1 1 1 1	3 2 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	 3 国 東川ユニットの住私国 (見かけの層序) 4 図 海部ユニットと牟岐ユニットのルートマップ 5 図 海部ユニットの岩相 6 国 海部ユニットの桂状図 (見かけの層序) 8 図 奈半利川ユニットのルートマップ 9 図 奈半利川ユニットのひとマップ 9 図 奈半利川ユニットの砂岩及び砂岩泥岩互層 0 図 奈半利川ユニットの破断した砂岩泥岩互層 0 図 奈半利川ユニットの破断した砂岩泥岩互層及び泥岩 2 図 奈半利川ユニットの破断した砂岩泥岩互層及び泥岩 2 図 奈半利川ユニットの破断した砂岩泥岩互層及び泥岩 3 図 始新世放散虫化石とその分帯 4 図 四万十帯古第三系付加コンプレックスから産出する古第三紀放散虫化石 5 5 図 四万十帯古第三系付加コンプレックスの砂岩組成 6 図 四万十帯古第三系付加コンプレックスの砂岩組成 6 図 四万十帯古第三系付加コンプレックスの砂岩組成 7 2 国 断層の姿勢 3 回 断層の案頭写真 4 図 犬吠断層下盤の東川ユニットに発達する小断層 1 図 第四系の地点位置図 2 段丘堆積物の区分と編年 3 段丘堆積物の露頭写真 5 回 崩壊堆積物の露頭写真 6 回 深層崩壊地の地形分類図

(原 英俊・植木岳雪)

馬路地域は、世界測地系で北緯 33° 30′ 12″ 2 ~ 33° 40′ 12″ 1, 東経 133° 59′ 50″ 4 ~ 134° 14′ 50″ 4(日本測地系で 北緯 33° 30′ ~ 33° 40′, 東経 134° 00′ ~ 134° 15′)の範囲 にある.本地域は、四国山地の南東部に、そして室戸半 島の北側に位置する(第 1. 1 図 a).行政区分では、高 知県安芸郡馬路村、安芸郡北川村、安芸郡安田町、安芸 郡東洋町,安芸市,徳島県海部郡海陽町に属する(第 1. 2 図).本地域はほぼ全域が山地からなり、四国第二の標 高を持つ剣山(標高 1,955 m)から室戸岬に向かい山地 は緩やかに低くなる標高を示す(第 1. 1 図 b).

本地域では宝蔵山(1,249 m)を最高峰とする山地地 形が特徴であり,低地は極めて少ない(第1.2図).馬 路村の村境をなす山稜沿いの宝蔵山・稗ご室山(1,228 m)・綾木森(1,141 m)・八杉森(1,029 m)・鐘ケ龍森 (1,126 m)・亀谷山(1,083 m)・貧田丸(1,019 m),馬路 村内の雁巻山(1,124 m)・汗谷山(1,062 m)・谷山(1,109 m)・ 天狗森(1,296 m),北川村村内の高善森(1,029 m)など と1,000 mを超える稜線が連なる.これらの山地の山腹 には、深層崩壊の地形が多数認められる.また東洋町梶 素材でのように、稜線の頂部に線状凹地などの山体重力変 形地形も見られる.

本地域中~西部の高知県側の河川のうち,伊尾木川・ 安田川・奈半利川及び支流の小川川は土佐湾に,野根川 と徳島県側の芸喰川・野根川・海部川支流の相川は海部 灘に流れ込む(第1.1図a,第1.2図).各水系は,上 流部では侵食谷が形成され,しばしば比高の大きな V 字谷が刻まれる(第1.3図).また,上述の河川は,主 に南北方向に流路を持った先行谷として発達し,しばし ば蛇行する.この河川の本流には,直交する東西方向に 流路を持つ小さな支流を伴う.各流域の本流と一部の支 流に沿っては,後期更新世と完新世に形成された低位段 丘堆積物と沖積段丘堆積物がわずかに分布する.野根川 の中~下流部には氾濫原が広がる.奈半利川には,水力 発電を目的として,1970年に馬路地域のほぼ中央部に 位置する魚梁瀬ダムが.これに先行し1960年に平鍋ダ ム,1963年に久木ダムが建設された.それぞれのダム では,魚梁瀬貯水池,平鍋ダム湖,久木ダム湖があり静 水域が広がっている(第1.2図).

本地域には、段丘堆積物などの第四系を除くと、 四万十帯の白亜系~古第三系付加コンプレックスが広く 分布する.付加コンプレックスには北東-南西ないしほ ぼ東西走向で高角度傾斜の層理面・劈開面及びユニット 境界断層が発達し、特にユニット境界断層に沿って谷地 形が形成され、顕著なリニアメントとして組織地形や侵 食地形が認められる(第1.2図).

第1.1図 馬路地域周辺の地形概略図

(a) 地形陰影図. 国土地理院 50 m メッシュ数値地図の標高データを基に, GMT (Generic Mapping Tool; Weseel and Smith, 1995) を用いて作成した. 緯度経度は世界測地系による. (b) 剣山〜室戸岬にいたる地形断面図. 鉛直:水平は10:1で示した.

第1.2図 馬路地域の主要山地,河川及び行政区分 (a)地形陰影図.国土地理院50mメッシュ数値地図の標高データを基に,GMTを用いて作成した.(b)行政区分.

第1.3図 山地地形と峡谷 北川村島より北方を望む.北隣北川地域内の甚吉森を含む稜線は,高知県と徳島県の県境をなす.

(原 英俊・植木岳雪)

2.1 地質概略

四国東部における四万十帯付加コンプレックスは、安 芸構造線を境界とし、白亜系と古第三系に区分されてい た(例えば、高知県、1960、1961:甲藤、1977:須鎗・ 山崎、1987:日本地質学会編、2016).しかしながら、 馬路地域における安芸構造線の位置については不確かな ことが多く、研究者によって異なる見解が示されていた (日本地質学会編、2016). Hara and Hara (2019)では、 安芸構造線周辺の付加コンプレックスについて、新たに 産出した放散虫化石、砕屑性ジルコン U-Pb 年代、砂岩 の後背地変遷について総合的に研究を行い,安芸構造線 周辺の付加コンプレックスについて,その地質年代及び 後背地変遷を明らかにした.本報告では,原ほか(2014), Hara et al. (2017), Hara and Hara (2019)に従い,四万十 帯付加コンプレックスについてユニット区分を行った. 四国東部における四万十帯付加コンプレックスの地質概 略図及び地質総括図を第2.1図と第2.2図に示す.馬 路地域の地質概略図を第2.3図に示す.また従来の研 究報告との地質体の対比を第2.4図に示す.

四国東部,北隣の北川地域から馬路地域の四万十帯白 亜系付加コンプレックスは,北より南に向かい,栩谷ユ

第2.1図 四国東部,四万十帯付加コンプレックスの分布とユニット区分 地質図は、公文・井内(1976),平ほか(1980b),公文(1981),君波ほか(1998),石田(1998),Taira et al.(1988),溝 口ほか(2009),Hara et al.(2017),及び原ほか(2018)に基づき編纂した.付加コンプレックスを被覆する堂ヶ奈路層・ 上組層・四十寺山層も合わせて図示した.

 第2.2図 馬路から北川地域における四万十帯付加コンプレックスの地質総括図
 砕屑性ジルコン U-Pb 年代は, Hara et al. (2017)及び Hara and Hara (2019)による. 珪長質凝灰岩のジルコン U-Pb 年代は, 日和佐ユニット及び牟岐ユニットについては Shibata et al. (2008)に、東川ユニットについては Hara and Hara (2019)による. 火山岩及び花崗岩の火成活動と沈み込む海洋プレートの取りまとめは、Seton et al. (2015)、Domeier et al. (2017)及び Hara and Hara (2019)による. なお、栩谷ユニット、日野谷ユニット、オソ谷ユニットは、北隣の北川地域に分布し、 本地域には分布しない.

ニット・出原ユニット・日野谷ユニット・オソ谷ユニット・谷山ユニット・日和佐ユニット・辛岐ユニット・衆 かがうま 迦ヶ生ユニット・日和佐ユニット・辛岐ユニット・衆 谷山ユニット・日和佐ユニット・牟岐ユニット・釈 かがうま

生ユニットが分布する.谷山ユニットは,主に砂岩及び 砂岩泥岩互層や破断した砂岩泥岩互層,さらに多色泥岩 やチャート及び玄武岩類の岩体を伴う混在岩からなる. 砕屑岩の堆積年代は,コニアシアン期~カンパニアン期

第2.3図 馬路地域の四万十帯付加コンプレックスの地質概略図

前半を示す.日和佐ユニットは,整然相を示す砂岩や砂 岩泥岩互層を主体として,一部に破断した砂岩泥岩互層 を含み,珪長質凝灰岩を伴う.砕屑岩の堆積年代はカン パニアン期後半である. 牟岐ユニットは,チャートや玄 武岩類ないし砂岩を含む混在岩及び著しく破断した砂岩 泥岩互層と千枚岩質泥岩からなる.釈迦ヶ生ユニットは, 破断した砂岩泥岩互層及び泥岩からなり,チャートや玄 武岩類を含まない.牟岐ユニットと釈迦ヶ生ユニットに おける砕屑岩の堆積年代は,いずれもカンパニアン期後 半~ダニアン期を示す(第2.2図).牟岐ユニットと釈 迦ヶ生ユニットの境界が安芸構造線となる.

馬路地域には、古第三系付加コンプレックスとして、 かいよう 東川ユニット(新称)・海部ユニット・奈半利川ユニッ トが分布する.東川ユニットは、破断した砂岩泥岩互層 を主体とし、砂岩、泥岩及び珪長質凝灰岩からなる.砕 屑岩の堆積年代は始新世中頃を示す.海部ユニットは、 礫岩を伴う砂岩及び砂岩泥岩互層ないし破断した砂岩泥 岩互層を主体とし、多色泥岩及び泥岩を伴うことを特徴 とする.砕屑岩の堆積年代は、始新世を示す.奈半利川 ユニットは、厚層理ないし塊状砂岩や砂岩泥岩互層から なり、本地域南部の一部などで破断した砂岩泥岩互層を 伴う.砕屑岩の堆積年代は、始新世後半を示す.

本地域の第四系は、段丘堆積物、崩壊堆積物、谷底低 地堆積物、氾濫原堆積物、現河床堆積物及び人工堆積物 からなる.馬路地域を流れる河川に沿っては、後期更新 世の低位段丘堆積物と完新世の沖積段丘堆積物が分布し ている.また、深層崩壊による様々な大きさの年代不詳 の崩壊堆積物が広く点在する.特に奈半利川と小川川沿 いでは、地質図規模の深層崩壊が認められる.また、野 根川の支流には、深層崩壊あるいは多数の表層崩壊によ る谷底低地堆積物が分布する.

なお本地域を含む広域地質図として、7万5千分の1

	-14 [29] -1-	Hara and	国)エネ、(2010)	Hara <i>et al</i> .	日本地質学会	君波ほか	т. (1000)	須鎗・山崎	(1001) - 十〇	本ほか	(3201) 中井一井公	甲藤ほか	高知県
	个辙官	Hara (2019)	(2102) (2102)	(2017)	編(2016)	(1998)	4 円(T 232)	(1988)	25× (1901)	(1980a)	(19/6) (19/0)	(1974)	(1961)
	馬路地域	馬路地域	20万分の1高知図幅	北川一馬路地域	魚梁瀕地域	徳島県南西部	海部川上流	四国東部	徳島県南西部	四国東部	徳島県南部	徳島県南部	高知県
	答半利111ユニット	C HN	☆半利Ⅲユニット					奈半利川層			☆ 坐利川国		<u> </u>
		1		★ 坐利Ⅲ1ユ ー ∽ ト			奈半利川層			<u> 今 </u>		<u> </u>	
迷	御堂ユロシト										海部層 (K1)		大山岬層・室戸
三策					太 半利 三層		海部砂岩層	國理由主			144 HIVE 上部層 (K2)		層・奈半利川層
早	海老ヶ池層*1					-	海老ヶ池泥岩層						
	東川ユニット	Nh1	奈半利川ユニット	奈半利川ユニット		-				奈半利川層		-	と言言語
	大山岬層*1		大山岬ユニット							大山岬層			
	釈迦ヶ生ユニット	Mg3		奈半利川ユニット			-					-	
	千枚岩實泥岩	Mg2		- シ 千枚岩	魚梁瀬		٤*						
※ 王	牟岐ユニット 主い混在号	Mg1	ユッニナ智英	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	メランジュ	全峙鬼屠	,		室は風層	未区分白亜系	安岐國		
Ē₿\$		1 D	-	向牟	中国		*						須崎層
节	日和佐ユニット		日和佐ユニット	日和佐ユニット	II/1-/ -	日和佐累層	1		日和佐累層				
	冬山ユニット		横波ー手結ユニット	谷山ユニット		谷山黒層	谷山累層		谷山累層, 赤松累層上部	手結・月 見山 メランジェ			
重	路地域の四万十帯付	加コンプレ	ックスの地質体対	寸比									

樫ノ瀬層・神野層・伊勢田コンプレックス・瀬戸山層・明丸メランジュ・ က က ・三ヶ尻層・村山層. 日和佐累層・轟層・小川谷層・入道山層 *1:本地域には分布しない. *2: 田層 4 X сi

褽

地質図幅「甲浦」(鈴木, 1931)及び20万分の1地質図 幅「剣山」(神戸, 1968)が地質調査所から発行されて いる.また20万分の1高知県地質鉱産図(高知県, 1960, 1961),15万分の1徳島県地質図(徳島県, 1972),5万分の1表層地質図「馬路」(高知県,1982), 20万分の1高知県温泉水脈推定基礎地質図(高知県, 1991),20万分の1土地保全図(国土庁土地局,1991), 20万分の1四国地方土木地質図(四国地方土木地質図 編纂委員会,1998)において,本地域を含む広域地質図 が公表されている.

また本報告で用いる地質年代は、国際層序委員会 (International Commission on Stratigraphy) 発行の「The Geologic Time Scale」(Gradstein *et al.*, 2012; Cohen *et al.*, 2013 update; Ogg *et al.*, 2016) に従い、年代値につ いては 2018 年の改訂版 (v2018/08) を用いた. さらに、 次章以降で使用するルートマップ、露頭、薄片写真の岩 石採取地点, 化石産出地点の位置情報について、巻末の 付図に示す.

2. 2 付加コンプレックスにおける用語の定義 と年代の扱い

馬路地域には、四万十帯付加コンプレックスが広く分 布する.四万十帯付加コンプレックスは,四万十帯と定 義される帯状区分内に認められる付加コンプレックスの 総称として使用する. 付加コンプレックス(付加体)と は、海洋プレートが海溝で大陸プレートに沈み込む際に、 海洋プレートを構成する玄武岩類・石灰岩・チャート・ 珪質泥岩、そしてこれら覆う海溝充填堆積物が大陸側に 押し付けられる付加作用によって形成された地質体であ る (例えば, 勘米良, 1976; 平ほか, 1980a). 四万十累 層群ないし四万十超層群と呼ばれる場合もある(公文・ 井内, 1976;平ほか, 1980a;君波ほか, 1998). また英 語名称として、四万十付加体や四万十付加コンプレック スを意味する Shimanto accretionary prism (Hibbard et al., 1992; Ohmori et al., 1997)や Shimanto accretionary complex (Hasebe et al., 1993 ; Shibata et al., 2008 ; Hara et al., 2017) も用いられている.

岩相区分

本報告における岩相区分は、構成される岩石種の違い を基に行った.一方、四万十帯付加コンプレックスの地 層は、堆積時における未固結変形や、付加時に受けた様々 な変形により、しばしば様々な程度に破断を受け、また 泥質基質中に岩塊が取り込まれ混在化が生じる.そこで 岩相区分の際に、地層の破断や混在化の程度も考慮し、 整然相、破断相と混在相を以下の様に定義した.

整然相は,砂岩泥岩互層など,整然とした地層の積み 重なりを残している.報告内では,岩石名をそのまま記 述した.また整然相の地層の層理について,層厚数 cm

箫

~ 10 cm を薄層理, 層厚数 10 cm ~ 1 m を中層理, 層厚 数 m を厚層理とした. 本地域の四万十帯付加コンプレッ クスでは, 日和佐ユニット, 海部ユニットの一部, 奈半 利川ユニットで卓越する.

破断相は、本地域では主に砂岩泥岩互層が様々な程度 に破断され、地層としての連続性が途切れている状態を 指し、ブーディン構造や膨縮構造などの変形構造によっ て特徴づけられる.これらについては、破断した砂岩泥 岩互層と記述した.谷山ユニットの一部、釈迦ヶ生ユニッ ト、東川ユニット、海部ユニットの一部で卓越する.

混在相は、地層としての連続性が完全に欠如し、様々 な大きさの岩体・岩塊と、それらを取り巻く泥質岩から なる.岩体・岩塊の構成岩類は、主に砂岩、多色泥岩、 チャート、玄武岩類であり、ユニット毎にその構成要素 と集合形態は異なる.また、岩体と岩塊の規模について は、地質図に表現できる規模を「岩体」、露頭で識別で きる規模を「岩塊」、それ以下の規模には「岩片」を用 いた.そして、岩塊ないし岩片とこれらを包有する泥質 岩からなり混在相を示す岩石を、混在岩と呼ぶ.なお岩 体とこれを含有する混在岩は、一般にメランジュ (mélange)として呼ばれ (例えば、Hsü、1974; Raymond、 1984; 脇田、1989)、その成因論や分類について議論され ている (Festa *et al.*, 2010, 2019; Kimura *et al.*, 2012; Wakita, 2015).本地域では、混在相は谷山ユニットの 一部及び牟岐ユニットで卓越する.

ユニット区分

一般に付加コンプレックスでは、覆瓦構造を形成した 逆断層によって上限・下限が境にされた,類似する岩相 を保持する一つのまとまりから,構造層序単元(tectonostratigraphic unit)が認定される.本地域においても、岩 相組合せの差異から構造層序単元を認定した。国際層準 ガイド(日本地質学会訳編, 2001)によると、多様で不 規則に混ざり合う岩石の集合に対して、層序単元の名称 として複合岩体(コンプレックス, complex)の名称使 用が推奨されている.一方,外帯に属する三波川変成コ ンプレックス (三波川帯変成岩類), 秩父帯付加コンプ レックス,四万十帯付加コンプレックスでは,構造層序 単元の名称として「ユニット」が与えられている(例え ば、Wakita, 1988; 脇田ほか, 2007), もしくは単元を そのまま「ユニット」と置き換え使用される(例えば、 松岡ほか,1998) ことが多い.本報告においても, 四万十帯付加コンプレックスの構造層序単元として、 ユ ニットを使用する. これは複合岩体として示す変成コン プレックスないし付加コンプレックスと、構造層序単元 名としてのコンプレックスの混同を避けるためであり, また付加コンプレックスに対して下位の階層を便宜上に 区別するためである. さらに四万十帯付加コンプレック スの場合,整然相及び破断相を示す地層(タービダイト)

が広く認められ,混在化した地層からなる複合岩体(コ ンプレックス)の使用が適切でない場合がある.なお, 平ほか(1980a)では,整然相の地層に対して「層」を, 混在相からなる地層に対して「メランジェ, mélange」 の名称を与え,両者の違いを示した.

地質境界における存在確実度と位置正確度

本報告及び地質図は、日本工業規格 JIS A 0204:2012 「地質図 – 記号,色,模様,用語及び凡例表示」(日本規 格協会,2012a)及び日本工業規格 JIS A 0205:2012「ベ クトル数値地質図 – 品質要求事項及び主題属性コード」 (日本規格協会,2012b)に基づいて作成を行った.これ らでは地質記号線種の全面改訂が行われ、地層の界線や 断層などの地質学的属性(地質境界)を表現する記号は、 存在の「確実度」と位置の「正確度」に基づいて境界を 分類することとなっている.

「確実度」は、「存在確実」と「存在不確実」に分けら れる.「存在確実」は、地質境界が存在することが確か である場合に用いられる.本報告では、地質境界を主要 な「断層」と「地層・岩体または岩相の境界」とした. そして、地質境界露頭の存在、明瞭なリニアメントの存 在、また異なる地点に見られる岩相の相違により境界の 存在が確実に判断される場合に、「存在確実」として扱っ た.なお本報告において、「存在不確実」である地質境 界は存在しない.

「正確度」は、その信頼区間を基に、「位置正確」・「ほ ほ正確」・「位置推定」と定義される.「位置正確」は、 露頭やリニアメントの存在、また岩相の相違により、地 質境界の位置が正確に求められる場合に用いた.本地域 は山岳地域に位置するため調査ルートが限られ、露頭情 報の乏しい地域がある.この様な、露頭・リニアメント・ 岩相境界が確認できていない山間部において、地質境界 線の連続性が維持されている場合に「ほぼ正確」を適用 した.「位置推定」は、地質境界線の連続性も確認でき ない場合に適用した.

なお平成31年3月に上記JIS 規格の改正が行われ, 表示等の若干の変更が加えられた.本報告及び地質図は, その改訂版(JIS A0204:2019及びJIS A0205:2019)に 準拠し作成した.

付加年代

付加コンプレックスにおいて,海洋プレートの構成岩 類及び海溝充填堆積物が,付加する直前における海溝で の模式的な層序は海洋プレート層序(OPS: ocean plate stratigraphy)と呼ばれる(例えば,Matsuda and Isozaki, 1991; Wakita and Metcalfe, 2005). 典型的な海洋プレー ト層序は,下位より,中央海嶺で噴出した玄武岩(MORB: mid-ocean ridge basalt)や海山起源の玄武岩(OIB: ocean island basalt),遠洋~半遠洋域で堆積した石灰岩・

第2.5図 砕屑性ジルコン U-Pb 年代の評価

(a) YC1 σ と YC が同じ年代を示す場合. (b) YC1 σ が YC より若い年代を示す場合. (c) YSG が YC1 σ と重ならない 場合. YSG を YC1 σ から除外して年代値を算出する. YSG (Youngest single grain age):最若の単一粒子年代. YC1 σ (Youngest cluster age ± 1 σ):最若の粒子集団年代 (2粒子以上からなり,そのうち最若の単一粒子年代に対して,年代誤差±1 σ で年代が重複する粒子集団から算出した加重平均値年代). YC (Youngest cluster):最若の粒子集団年代 (最若の単一粒子 年代から隣り合う年代値に対し,年代誤差±1 σ で年代が重複し続ける粒子集団から算出した加重平均値年代).

チャート・珪質な多色泥岩、海溝で堆積した砂岩や泥岩 などの砕屑岩からなり、海洋プレート層序の下位から上 位に向かい新しい年代を示す. なお四万十帯付加コンプ レックスの玄武岩類は、礁性石灰岩を伴わない産状や化 学組成によって、その大部分は MORB 起源であること が指摘されている (Sugisaki et al., 1979; 平ほか, 1980b; 小川·谷口, 1989; Kiminami et al., 1994). また付加作 用の時期は砕屑岩の堆積年代以降であり、砕屑岩の堆積 年代は付加年代に近似されてきた. この砕屑岩の堆積年 代は、1980年代以降、泥岩から放散虫化石を見出すこ とで明らかにされてきた. また近年では, 砂岩中の砕屑 性ジルコン U-Pb 年代を用いた堆積年代の推定が盛んに 行われている. 放散虫化石年代と砕屑性ジルコン U-Pb 年代では、対象となる岩石や地質年代を決める手法が異 なる. そこで本報告では、放散虫化石年代と砕屑性ジル コン U-Pb 年代を取りまとめ、両年代が重複する範囲を 砕屑岩の堆積年代として採用した.しかし、放散虫化石 年代より砕屑性ジルコン U-Pb 年代が有意に古い年代を 示す場合は、堆積同時性の砕屑性ジルコンが供給されて いないと判断し、放散虫化石年代のみを堆積年代として 採用した. そして各ユニットの砕屑岩の堆積年代を用い て,付加の時期に対して年代的制約を与えた.なお白亜 系付加コンプレックスのような"白亜系"の年代層序単 元は,砕屑岩の堆積年代によって表される.

砕屑性ジルコン U-Pb 年代の評価

砕屑性ジルコン U-Pb 年代の評価において、その最も 若い年代(最若年代)が砕屑岩の堆積年代の下限を規定 するとされている (例えば, Fedo et al., 2003; Dickinson and Gehrels, 2009; Tsutsumi et al., 2009). 一方, この 最若年代の指標として、単一のジルコン粒子年代、もし くは最若粒子集団の加重平均年代を採用するのかは、研 究者によって見解が異なっている. Dickinson and Gehrels (2009) は, 砕屑性ジルコン U-Pb 年代の指標と して、最若の単一粒子年代(YSG: Youngest single grain age) と最若の粒子集団年代 (YC1 σ : Youngest cluster age $\pm 1 \sigma$)などを提唱した. 最若の単一粒子年代(YSG) は、最も若い年代を示す単一粒子のジルコン年代である. 最若の粒子集団年代(YC1 σ)は、2粒子以上から構成 される粒子集団で、その中で最も若い年代から年代誤差 ±1σで重複する年代までの一つの集団に対し、それら の粒子年代を加重平均して得られる年代値である. Hara et al. (2017) では、最若の粒子集団年代として、最若単 一粒子年代(YSG)から隣り合う年代値に対し、年代誤 差±1σで重複し続ける年代の加重平均値を求めた. そ

の際, Dickinson and Gehrels (2009) の YC1 σ を誤って 引用し, 異なる方法で見積もられた最若の粒子集団年代 に YC1 σ の名称を与えた.本報告では, Hara and Hara (2019) に従い, Hara *et al.* (2017) の方法による最若の 粒子集団年代を YC (Youngest cluster age) と示した.そ して, Hara *et al.* (2017) で示された YC1 σ は, すべて YC に置き換えた.また Dickinson and Gehrels (2009) に よる YC1 σ については,新たに計算した.

YSG, YC1 σ, YC の関係については、3つの事例が 認められる. 第2.5 図 a は、YC1 σ と YC が同じ粒子 集団から構成され、同じ年代を示す場合である. YCの 構成粒子数が少ない時や, YC を構成する年代が非常に まとまっている時に認められる.本地域及び北川地域の 四万十帯付加コンプレックスでは、オソ谷ユニット、谷 山ユニット、牟岐ユニット(混在岩)の砂岩から得られ た砕屑性ジルコン年代で認められる. 第2.5図bは, YC1 σが YC より若い年代を示す場合である. YC の構 成粒子数が多い時や、YCを構成する年代にばらつきが ある時に認められる. 栩谷ユニット, 日野谷ユニット, 牟岐ユニット(千枚岩質泥岩に伴う砂岩), 釈迦ヶ生ユ ニット、東川ユニットの砂岩から得られた砕屑性ジルコ ン年代で認められる. 第2.5図 cは, YSG が YC1 σに 含まれない場合である. YC1 σ及び YC が堆積年代より 有意に古く, YC1 σや YC より若い年代を示す粒子が極 めて少ない場合に認められる.本地域では,奈半利川ユ ニットの砂岩で認められる.

本地域の四万十帯付加コンプレックスにおいて, YSG, YC1 σ, YC の年代値は, 数 100 万年の範囲内で 一致する. その中でも, Hara et al. (2017) は, 島弧火 成活動が活発でない前期白亜紀では最若単一粒子年代の YSG の方が、活発な後期白亜紀では最若粒子集団年代 である YC(彼らの YC1 σ)の方が, 泥岩から産する放 散虫化石年代と調和的であることを指摘した. さらに YCを構成するジルコン粒子は、最若ピークを構成する 粒子集団と一致し、最若ピーク年代を示す(Hara et al., 2017, 第2.5図a, b). そこで本地域に分布する四万十 帯上部白亜系付加コンプレックスにおいて、砕屑性ジル コンU-Pb年代の最若年代の評価では、YCを採用する こととする. また古第三系付加コンプレックスにおいて は、後背地における島弧火成活動が活発でないため、 YSG, YC1 σ, YC のすべてにおいて, 放散虫化石年代 の始新世より有意に古い後期白亜紀~暁新世の年代を示 す (Hara and Hara, 2019). そのため, 古第三系付加コ ンプレックスにおいて、砂岩から得られる砕屑性ジルコ ン U-Pb 年代は堆積年代の評価に有効ではない.

3.1 研究史及び概要

本地域を含む四国東部の四万十帯白亜系付加コンプ レックスは、7万5千分の1地質図幅「甲浦」(鈴木、 1931)ではジュラ系として安藝川層に一括して図示され た.20万分の1高知県地質鉱産図(高知県、1960、 1961)では、葉山層及び須崎層として図示された.20 万分の1地質図幅「剣山」(神戸、1968)では、白亜系 として、北より西川層・葉山層、東川層・野々川層・須 崎層、五剣山層と命名された.なお剣山図幅における白 亜系は、各地層の分布範囲が明確ではなく、地質図上で 区分がなされていない、徳島県(1972)による15万分 の1徳島県姫質図では、四万十帯白亜系付加コンプレッ クスは日野谷層と革岐層に区分された.

1970年代初頭までは、産出が非常に稀な二枚貝やア ンモナイトの大型化石に基づいて、四万十帯白亜系の堆 積年代が決定されていた(東明, 1958; 須鎗ほか, 1967). 一方, 1970年代以降, 泥岩やチャートから放散 虫化石の産出報告が相次ぎ、次々と地質年代の決定が行 われた、四国東部の四万十帯白亜系においても、散点的 で少ないながら白亜紀放散虫化石の産出報告がなされた (例えば、中川・中世古、1977;中川ほか、1977、1980、 1984;須鎗, 1984, 1986).四国東部の四万十帯白亜系 における総合的な研究は、公文(1981)によって初めて 行われた. 公文(1981)は、岩相層序及び砂岩組成、さ らに放散虫化石年代に基づいて、四万十帯白亜系を検討 し、地層区分と各地層の年代決定、さらに後背地の変遷 を明らかにした. また柳井 (1983) 及び Yanai (1984) は四国東部の四万十帯白亜系の地質図を示し、さらに古 屋川衝上断層及び水落衝上断層を認め四万十帯白亜系を 北部・中部・南部に三分した. なお 1980 年代初頭頃ま では,四万十帯白亜系の地層については,地向斜造山運 動論に基づき、その形成過程が議論されていた.

四国の四万十帯白亜系では、放散虫化石の報告ととも に、混在相の認定による地層区分や海洋プレート層序が 示され、世界に先駆けて付加体地質の概念が体系化され た(平ほか、1980a; Taira et al., 1988). さらに1990年 後半以降、研究の進展に伴って、四国東部の四万十帯白 亜系は、付加コンプレックスとして認識され、放散虫化 石による系統的な地質年代の決定や砂岩の後背地解析な どの研究が大きく進展した(石田, 1998;君波ほか、 1998). 原ほか(2014)は北隣の北川地域において、石 (原 英俊・植木岳雪)

田(1998)及び君波ほか(1998)による四国東部の研究 を基に、四万十帯白亜系付加コンプレックスを、構造的 上位(北)から栩谷ユニット・出原ユニット・日野谷ユ ニット・オソ谷ユニット・谷山ユニット・日和佐ユニッ ト・革岐ユニットにスニット区分した(第2.1図,第2.2 図).これらのうち馬路地域には、谷山ユニット・日和 佐ユニット・牟岐ユニットが分布する.なお、日本地質 学会編(2016)は、魚梁瀬ダム周辺の地質図を示し、白 亜系付加コンプレックスを中川層と魚梁瀬メランジュに 区分した、両者は、それぞれ日和佐ユニット及び牟岐ユ ニットにほぼ対比される.

四国東部での四万十帯白亜系付加コンプレックスで は、砂岩の後背地についても検討が進んでいる。 栩谷ユ ニット・出原ユニット・日野谷ユニット・オソ谷ユニッ トでは長石に富む砂岩を、谷山ユニット・日和佐ユニッ トは岩片に富む砂岩を特徴とする(公文, 1981). 公文 (1992)は、砂岩中の斜長石の曹長石化を検討し、構造 的下位(南)に向かい、その程度が強くなることを示し た.またオソ谷ユニットと谷山ユニットの間では、砂岩 組成の違いとともに、砂岩の化学組成(SiO₂, TiO₂, Fe₂O₃, MgO, Sr など)の違いも指摘されている(君波 ほか, 1998;石濱・君波, 2000). 石濱・君波(2000)は, 砂岩と泥岩における化学組成変化に基づき,2つの岩石 相の区分が可能とし、KS I 及び KS II の岩石相ユニッ ト (petrofacies unit) を提唱した. なお KS I ユニットは, KS I a·KS I b·KS I c に細分され, 栩谷ユニット (KS I a)・出原ユニット (KS I b)・日野谷ユニット (KS I c)・オソ谷ユニット (KS I c) からなる. KS Ⅱユニッ トは、谷山ユニット・日和佐ユニット・牟岐ユニットか ら構成される. この岩石相ユニット間における砂岩の化 学組成変化は、後背地で生じた前期白亜紀後半~後期白 亜紀における火成活動の変遷により説明された(君波ほ か、1998). Hara et al. (2017) は、各ユニットから砕屑 性ジルコン U-Pb 年代を系統的に求め、放散虫化石年代 との比較を行った. そして砕屑性ジルコン U-Pb 年代を 基にした堆積年代の解釈には、後背地における火成活動 の理解が必要と結論づけた. すなわち, 島弧の火成活動 が活発でない場合には最も若い単一のジルコン粒子年代 が、活発な場合には最若のピーク年代に一致する最若粒 子年代が、放散虫化石年代に近似できると結論づけた.

また,四万十帯白亜系付加コンプレックスにおける温 度構造解析と断層運動の関係についても,詳しく検討さ

れている. Mori and Taguchi (1988)及び Ohmori et al. (1997) は、炭質物であるビトリナイトの反射率解析から、谷山 ユニットと日和佐ユニットの境界断層である深瀬断層 (公文, 1981) において, 温度構造の不連続を認めた. そして深瀬断層は、アウト・オブ・シーケンススラスト (out-of-sequence thrust) として活動したと推定された (Ohmori et al., 1997). 同様に,四万十帯白亜系及び古 第三系付加コンプレックス境界に位置づけられる安芸構 造線も、温度構造不連続面を示すことが知られている (Mori and Taguchi, 1988 ; Ohmori et al., 1997 ; Hara et al., 2017). 徳島県牟岐町の海岸沿いに分布する牟岐ユ ニットの混在岩 (メランジュ)の地質学的意義に関して, 変形過程や流体移動についての検討が進み、底付け付加 過程と地震発生帯における地震発生過程が明らかになっ ている (例えば, Matsumura et al., 2003; Ikesawa et al., 2005 ; Kitamura et al., 2005 ; Ujiie et al., 2007a, 2007b, 2010;山口ほか, 2009; Kimura et al., 2012). また混在 岩(メランジュ)の変形構造解析により、沈み込んだ海 洋プレートの移動方向が、後期白亜紀から古第三紀にか けて変化したことが指摘されている(Onishi and Kimura, 1995). また Hasebe et al. (1993) は四万十帯白亜系付加 コンプレックスからジルコンとアパタイトのフィッショ ン・トラック (FT) 年代を報告し, ジルコンの FT 年代 は弱変成作用による部分的な焼きなまし(partial annealing)により砕屑岩の堆積年代より若い年代を示す こと、アパタイトの FT 年代は約 10 Ma に 100°C 以下に なった冷却年代を示すことを指摘した. Nakamura et al. (2019) は、四万十帯白亜系付加コンプレックスにお いて, 熱熟成に対する有機物の構造変化を検討し, 構造 変化に温度依存性を認めるとともに、低温領域では温度 以外の要素も働く可能性を示唆した.

一方,馬路地域における安芸構造線の位置については, 研究者によって異なる見解が示されていた(例えば、鈴 木, 1931;高知県, 1961;須鎗·山崎, 1987;日本地質 学会編, 2016). そこで, Hara et al. (2017) は、イライ ト結晶度と炭質物のラマン分光解析を用い温度構造の不 連続面を明らかにし、その不連続面をなす断層を安芸構 造線とした.しかし、この安芸構造線の上盤及び下盤よ り、泥岩から白亜紀放散虫化石が産し、温度構造の不連 続面が白亜系・古第三系境界を示さないことが指摘され ていた (原・原, 2016). そこで, Hara and Hara (2019) では、安芸構造線周辺の付加コンプレックスについて、 新たな放散虫化石の抽出を試み、また砕屑性ジルコン U-Pb年代測定及び砂岩の後背地解析を行った. その結 果,安芸構造線は温度構造境界であることが再確認され, 新たに白亜系・古第三系付加コンプレックス境界断層が 見出された (Hara and Hara, 2019). そしてこの白亜系・ 古第三系付加コンプレックス境界断層は、犬吠断層とし て新称された.

本報告では原ほか(2014), Hara *et al.* (2017) 及び Hara and Hara (2019) に基づき,四万十帯白亜系付加コ ンプレックスのユニット区分を行った.四万十帯白亜系 付加コンプレックスは,構造的上位(北)より,谷山ユ ニット・日和佐ユニット・牟岐ユニット・釈迦ヶ生ユニッ ト (新称) に区分される.

3. 2 谷山ユニット (Tns, Tnd, Tnx, Tnr, Tnc, Tnb)

命名・定義 公文(1981)により谷山累層と命名され た. その後, 君波ほか(1998)により, 公文(1981)の 谷山累層と赤松累層下部層をあわせて, 谷山累層は再編 された. 原ほか(2014)は, 北隣の北川地域において, 君波ほか(1998)による谷山累層を,構造層序単元とし てユニットを用い,谷山ユニットに改称した. 本報告に おいても,原ほか(2014)に従い,谷山ユニットを用い る. 馬路地域に分布する谷山ユニットは,下部・上部に 区分され,それぞれ断層関係にある.下部は,主に破断 した砂岩泥岩互層と砂岩及び砂岩泥岩互層からなり,多 色泥岩やチャートを伴う.上部は,チャートや玄武岩類 の岩体を含む混在岩と砂岩及び砂岩泥岩互層からなる.

分布・模式地 本地域の北西部に分布し,西川, 伊 素川の上流, 積荒川などの流域に,また宝蔵山や綾木森 周辺に分布する.北隣の北川地域内に広く分布する.本 地域における伊尾木川上流を模式地とする.安芸市古井 の伊尾木川流域や加勝林道周辺には,本ユニットの下部 及び中部が,安芸市別役、~影野周辺の伊尾木川流域に は本ユニットの上部が分布する.それぞれの地域のルー トマップを第3.1図に示す.

岩相 砂岩及び砂岩泥岩互層 (Tns),破断した砂岩泥 岩互層 (Tnd),混在岩 (Tnx)からなり,多色泥岩 (Tnr), チャート (Tnc)及び玄武岩類 (Tnb)の岩体を伴う.

砂岩は、塊状や中~厚層理な成層砂岩で、灰色~暗灰 色を呈する.成層砂岩は、単層の層厚が数10 cm~1 m 程度であり、泥岩を伴い砂岩泥岩互層に漸移的に変化す る(第3.2図 a).比較的淘汰の悪い石質砂岩で、細粒 ~粗粒までの様々な粒度を示す.石英・火山岩片を多く 含み、長石・深成岩片などを少量含む(第3.3図 a). 長石は、曹長石化(ソーシュライト化)を受け、変質し ていることがある.

砂岩泥岩互層は、一般に砂岩優勢ないし等量の砂岩泥 岩互層である.砂岩優勢な砂岩泥岩互層では、砂岩と泥 岩の層厚は、それぞれ数10 cm及び数 cm~10 cmである. 砂岩と互層する泥岩は、暗灰色~黒色を呈する.しばし ばシルト質で、葉理が認められることもある.砂岩泥岩 等量互層は、数10 cmの層厚を示す.砂岩泥岩互層は、 一部で破断相を示すことがある.

破断した砂岩泥岩互層は,変形を受け破断相を示す砂 岩泥岩互層である.破断した砂岩泥岩互層は,等量ない

第3.1図 谷山ユニットのルートマップ. (a)安芸市古及び加勝林道周辺.(b)安芸市別役〜影野周辺.岩相の凡例記号は地質図を参照.

し泥岩優勢な砂岩泥岩互層がしばしば変形を受け,砂岩 層がブーディン構造ないしレンズ状の形態をなす.砂岩 単層の層厚は,数10 cm以下であることが多い.

混在岩は、強い変形を受けた混在相で、砂岩、多色泥 岩、チャート、玄武岩類の岩塊ないし岩片を泥質基質中 に含む、剪断変形により、岩塊及び岩片は、レンズ状の 形態をなし、短径は数 mm ~数 m と様々な大きさを示 す(第3.2 図 b-c).変形の弱い砂岩岩塊では破断相を 示し、ブーディン構造や、未固結変形による岩塊への泥 注入も認められることがある.泥質基質は、剪断変形を 受けた泥岩からなり,鱗片状劈開が強く発達する. 鱗片 状劈開や,複数の断層が発達することで,泥質基質は強 い剥離性を示す(第3.2図d).

多色泥岩は,淡~暗緑色,赤色~赤褐色や淡~暗灰色 を呈する珪質泥岩である.様々な色を呈し,色合いも漸 移するため,地質図上では多色泥岩と一括して図示した. 多色泥岩は,微晶質な石英と粘土鉱物から構成され,シ ルト大以上の砕屑粒子はほとんど含まない.赤色チャー トと互層する珪質泥岩は赤色~赤褐色ないし暗緑色を, 凝灰質な珪質泥岩では淡緑色ないし淡~暗灰色を呈する

第3.2図 谷山ユニットの岩相

(a)砂岩泥岩互層.砂岩層はわずかに膨縮構造を受ける.宝蔵山林道.(b)チャート岩塊を含む混在岩.破線はチャート岩塊の境界を示す.加勝林道.(c)砂岩及び玄武岩岩塊を含む混在岩.西川.(d)断層が発達する泥質混在岩.宝蔵山林道.
(e)灰色チャート.伊尾木川.(f)玄武岩角礫岩.伊尾木川.
Ss:砂岩.Md:泥岩.Ch:チャート.Ba:玄武岩

ことが多い.本地域の谷山ユニットでは,また層厚50 m以下の赤色珪質泥岩が,破断した砂岩泥岩互層中に岩体として,加勝林道から横荒川河床にかけて認められる. その他,混在岩中に岩片として,またチャートと互層して露出する.なお玄武岩火山砕屑岩に伴われる赤~暗赤 色泥岩は,主に玄武岩類を起源とする泥岩であるため, 玄武岩類に含めた.

チャートは, 主に赤色~赤褐色, 淡~暗緑色, 暗灰色

を呈し、一般に多色泥岩と互層し,層状チャートをなす. また多色泥岩の挟みのない塊状チャートも一部に認めら れる.特に玄武岩類近傍では塊状チャートとなることが 多い(第3.2図 e).チャートは、隠微晶質~微晶質な 石英と不透明鉱物からなり,放散虫化石を含むことがあ る(第3.3図 b).またやや泥質なチャートが認められ, 鏡下では隠微晶質~微晶質な石英とともに、粘土鉱物の 定向配列が観察される.本ユニットのチャート及び多色

第3.3図 谷山ユニット構成岩相の顕微鏡写真

(a)砂岩. 伊尾木川. クロスニコル. (b)赤色チャート. 白い円形は放散虫化石. 伊尾木川. オープンニコル. (c, d) 無 斑晶質玄武岩. 針状の斜長石と変質し黒色をなすガラス質部分からなる伊尾木川. c:クロスニコル. d:オープンニコル. Q:石英, P:長石, Lv:火山岩片.

泥岩は,バランギニアン期~セノマニアン期にかけて,約 4500 万年の期間にイザナギプレート上に堆積したことが指摘されている(原・原,2019).

玄武岩類は、主に玄武岩溶岩、火山砕屑岩からなる. 溶岩は、塊状ないし枕状溶岩である.一般に暗赤色~茶 褐色ないし暗緑色を呈する.主に斜長石、単斜輝石、不 透明鉱物から構成され、緑泥石や緑れん石などの二次的 鉱物を伴う.北隣の北川地域によく分布し、針状ないし 短冊状の斜長石と、その間を充填する細粒な単斜輝石か らなる間粒状(インターグラニュラー)組織を示す玄武 岩、無斑晶質玄武岩(第3.3図 c, d)が認められる. また北隣の北川地域では、玄武岩溶岩の粗粒な部分とし て,暗緑色のドレライトがわずかに認められる(原ほか, 2014).

火山砕屑岩は, 溶岩が破砕され再堆積したもので, 玄 武岩岩片や斜長石や単斜輝石などからなる砕屑岩であ る. 枕状溶岩が角礫化しつつ, 枕状部も残っている角礫 岩も認められる(第3.2図f). 溶岩が急冷され, ガラ ス質な部分を持つ,水冷破砕岩(ハイアロクラスタイト) も認められる.火山砕屑岩には,微晶質な赤鉄鉱が多産 し,赤~暗赤色を呈する玄武岩起源の凝灰岩や上述の赤 ~暗赤色泥岩も含まれる.

本ユニットに対比される主結メランジュ(平ほか, 1980b)に含まれる枕状溶岩の古地磁気データから,玄 武岩の噴出が低緯度で起きたことが指摘されている(平 ほか, 1980b; Kodama *et al.*, 1983).

見かけの層序 一般に付加コンプレックス内部の岩相 境界は,整合や不整合などの堆積関係による境界だけで はなく,付加時に受けた断層運動などの構造関係による 境界も含まれる.そこで,岩相の積み重なりによる見か けの層序を,第3.4図に示す.

谷山ユニットは、断層を介して下部・上部に区分され る.下部は、破断した砂岩泥岩互層と砂岩及び砂岩泥岩 互層からなり、多色泥岩やチャートを伴う、上部はチャー トや玄武岩類を伴う混在岩と砂岩及び砂岩泥岩互層から なる.

第3.4図 谷山ユニットの柱状図(見かけの層序)

下部は安芸市古井や島周辺の伊尾木川河床や加勝林道 沿い(第3.1図a)に露出する.主に層厚4,500m程度 の破断した砂岩泥岩互層からなり,最大層厚100~600 mの砂岩が頻繁に伴われる.砂岩及び砂岩泥岩互層は東 方に向かい尖減し,層厚の変化が著しい.層厚50m以 下の多色泥岩やチャートが,安芸市古井の伊尾木川河床 から加勝林道沿いや,加勝林道から横荒川河床に認めら れる.

上部は安芸市別役〜影野周辺の伊尾木川沿いに露出す る(第3.1図b). 混在岩と砂岩及び砂岩泥岩互層が, 繰り返し露出する. 混在岩は, 層厚150m以下のチャー ト及び玄武岩類の岩体を伴う. 混在岩の最大層厚は約 900m程度であり, その分布はレンズ状の形態をなす. 砂岩及び砂岩泥岩互層の層厚は,約250~800mと側方 変化が激しい. また砂岩及び砂岩泥岩互層には,破断し た砂岩泥岩互層を伴う.

ユニット境界 谷山ユニットは深瀬断層を介して,日 和佐ユニットに衝上する (Ohmori et al., 1997; Hara et al., 2017).また北隣の北川地域において,オソ谷ユニッ トが谷山ユニットに衝上する.なおオソ谷ユニットと谷 山ユニットの境界は, Yanai (1984) による古屋川衝上断 層に相当する.

地質構造 深瀬断層は、四国東部全域で、ほぼ東北東 - 西南西ないしほぼ東西の走向を示すが、本地域でのみ 北東 - 南西走向となる(第2.1図). この深瀬断層の走 向の向きが変化することにより、本地域北東部において 谷山ユニットが南に張り出すように分布する. 谷山ユ ニットの地層は、概ね東北東走向で、北に中~高角度で 傾斜する. 一方、加勝林道や神山林道の深瀬断層が通る 周辺では、走向はやや北に振れ北東を示す.

地質年代 本ユニットの堆積年代は、泥岩から産出す る放散虫化石により、北東隣の桜谷地域ではコニアシア ン期~サントニアン期とされた(君波ほか、1998).北 隣の北川地域では、泥岩よりチューロニアン期の放散虫 化石が報告されている(原ほか、2012). Hara et al. (2017) は、砂岩の後背地変化と沈み込む海洋プレートの変遷よ り、谷山ユニットの地質年代の下限はコニアシアン期と 考えた.一方、本ユニットの砕屑性ジルコンの最若粒子 集団の加重平均 U-Pb 年代(本報告の YC)は、カンパ ニアン期前半を示す(Hara et al., 2017).そこでこれら の年代が重複するコニアシアン期~カンパニアン期前半 を、本ユニットの砕屑岩の堆積年代とした.

谷山ユニットは、バランギニアン期~セノマニアン期 のチャート、バレミアン期~セノマニアン期の多色泥岩、 コニアシアン期~カンパニアン期前半の砕屑岩からな る.

対比 混在岩ないし破断した砂岩泥岩互層を主体と し、コニアシアン期~カンパニアン期前半の付加コンプ レックスとして、公文(1981)の赤松累層上部層と谷山 累層, 君波ほか(1998)や石田(1998)の谷山累層に対 比される(第2.4図).また平ほか(1980a)による四 国東部の四万十帯付加コンプレックスの層序区分では, 高知県芸西村の海岸線に分布する手結メランジュや,高 知県香美市月見山付近に分布する月見山メランジュに対 比される.また20万分の1地質図幅「高知」(原ほか, 2018)の横波 – 手結ユニットに対比される.

3. 3 日和佐ユニット (Hws, Hwi, Hwd, Hwt)

命名・定義 中川(1976)により日和佐砂岩勝互層と 命名され、公文(1976)及び中川ほか(1977)により日 和佐層と改称された.その後、公文(1981)及び君波ほ か(1998)により日和佐層が日和佐累層に変更された. 原ほか(2014)は、北隣の北川地域で、君波ほか(1998) による日和佐累層を日和佐ユニットに改称した.本報告 では、原ほか(2014)に従い日和佐ユニットを用いる. 日和佐ユニットは、主に整然相を示す砂岩及び砂岩泥岩 互層からなり、まれに破断した砂岩泥岩互層や珪長質凝 灰岩を含むユニットとして定義される.

分布・模式地 中川, 西川, 東川, 小石川谷, 安田川 上流, 野根川上流, また野根川支流の東谷川, 阿瀬川谷, 池ヶ谷に分布する.本地域における模式地を奈半利川(西 川)及び中川沿いとし, そのルートマップを第3.5図 に示す.

岩相 主に砂岩及び砂岩泥岩互層(Hws)と砂岩泥岩 互層及び砂岩(Hwi)からなり,破断した砂岩泥岩互層 (Hwd)及び珪長質凝灰岩(Hwt)を伴う.

砂岩は、灰色~暗灰色を呈する塊状ないし成層砂岩で ある(第3.6図a,b).一般に細粒~中粒ないし粗粒で、 比較的淘汰の悪い石質砂岩からなる.石質砂岩は、石英・ 珪長質火山岩片を多く含み、長石や深成岩片なども含む (第3.7図a).成層砂岩は、単層の厚さが数10 cm ~ 数 m で中~厚層理を示し、数 cm 以下の泥岩が挟在する. 中層理の場合、泥岩を伴い砂岩泥岩互層に漸移すること が多い.また単層の厚さが数 m を示す厚層理の場合、 成層砂岩と塊状砂岩は漸移関係にあることが多い.

泥岩は、微細な粘土鉱物に富み、石英・長石・炭質物 などの不透明鉱物などを含む. 暗灰色〜黒色を呈する. しばしばシルト質で、葉理の発達が認められることもあ る.

砂岩泥岩互層は、一般に砂岩優勢ないし等量の砂岩泥 岩互層からなり(第3.6図 c)、まれに泥岩優勢な砂岩 泥岩互層(第3.6図 d)を伴う.砂岩優勢な砂岩泥岩 互層は、層厚数10 cm~1 mの砂岩に対し、数 cm~数 10 cmの泥岩を挟む、層厚が数10 cmの中層理砂岩へと 漸移することがある、砂岩と泥岩の量比は、9 対1~7 対3程度である、砂岩泥岩等量互層は、5~20 cmの層 厚を持ち、砂岩と泥岩の量比は、6 対4~4 対6程度で

第3.5図 日和佐ユニットのルートマップ 奈半利川上流及び中川下流周辺. 岩相の凡例記号は地質図を参照.

ある. 泥岩優勢な砂岩泥岩互層は,砂岩泥岩等量互層の 泥岩が優勢な部分で認められる.一般に,砂岩と泥岩は 10 cm 以下の層厚で,その量比は3対7~2対8程度で ある. これらの砂岩泥岩互層には,露頭規模で褶曲構造 が観察される(第3.6図 e,f).また級化層理が発達し, 地層の上位方向を容易に確認できる.

破断した砂岩泥岩互層は、変形を受け破断相を示す砂 岩泥岩互層である.主に泥岩優勢な砂岩泥岩互層、まれ に砂岩泥岩等量互層が、破断した砂岩泥岩互層となる. 本ユニットの破断した砂岩泥岩互層では、砂岩層は一般 に変形は弱く、膨縮構造やブーディン構造を示し、レン ズ状の形態を示すことはまれである.破断した砂岩泥岩 互層には珪長質凝灰岩を伴うことがある(第3.6図g). 珪長質凝灰岩層も破断し、地層の膨縮構造が見られる. 破断した砂岩泥岩互層は、西川や中川及び東川などに分 布する.

珪長質凝灰岩は、本地域西部で比較的よく分布し、安 田川上流や二の谷の林道沿いにおいて、単層の層厚が 10~20 cm 程度からなる成層凝灰岩として認められる (第3.6 図 h).全体の層厚は数 m ないし 10 m 程度であ る.地質図には、全層厚 10 m 程度で側方に連続性の良 い凝灰岩のみを示した.一般に、細粒であり、淡緑色な いし淡灰色なガラス質凝灰岩(第3.7 図 b)ないしガラ ス質結晶凝灰岩(第3.7 図 c, d)で、また凝灰質泥岩 も認められる.粗粒な凝灰岩では、平行葉理が認められ ることがある.一般に基質と火山岩片に富み、融食形な いし自形の石英や長石の斑晶、変質し粘土鉱物化した火 山ガラス片を伴う(第3.7 図 c).また、ジルコンや角 閃石などの重鉱物も含まれる.保存状態の良い気泡を伴う軽石は見られない.基質のほとんどは隠微晶質であり, 粘土鉱物などの変質鉱物を伴う.またガラス片や火山岩 片などは,変質し緑泥石となることもある(第3.6図f).

Shibata et al. (2008) は、徳島県牟岐町の海岸に分布 する日和佐ユニットの珪長質凝灰岩より、ジルコン U-Pb 年代として 73.5 ± 0.63 Ma の最若ピーク年代を得て、 この年代が堆積年代に相当すると解釈した. またこの珪 長質凝灰岩には、砕屑性の異質結晶として、前期白亜紀 やジュラ紀・三畳紀、また古原生代を示すジルコンも含 まれる.

見かけの層序 日和佐ユニットは,砂岩及び砂岩泥岩 互層と、わずかに含まれる破断した砂岩泥岩互層及び珪 長質凝灰岩によって岩相区分された。日和佐ユニットの 見かけの層序を第3.8回に示す.なお砂岩と砂岩泥岩 互層は、数10m~数100mの層厚で繰り返し露出し、 それぞれの量比に応じて砂岩及び砂岩泥岩互層と砂岩泥 岩互層及び砂岩に区分された.砂岩及び砂岩泥岩互層は, 主に塊状~成層砂岩からなり,砂岩優勢ないし等量の砂 岩泥岩互層を伴う.砂岩泥岩互層及び砂岩は,砂岩泥岩 等量互層及び成層砂岩からなり、泥岩優勢ないし砂岩優 勢な砂岩泥岩互層を伴う.

砂岩及び砂岩泥岩互層と砂岩泥岩互層及び砂岩は,一 般に500~1,500mの厚さをもって,繰り返し露出する (第3.8図).砂岩及び砂岩泥岩互層と砂岩泥岩互層及 び砂岩の走向方向への連続性は良い.この他に,日和佐 ユニットには,破断した砂岩泥岩互層及び珪長質凝灰岩 が含まれる.破断した砂岩泥岩互層は,主に砂岩泥岩互

第3.6図 日和佐ユニットの岩相

(a) 塊状砂岩~厚層理な成層砂岩、小石川谷、(b) 砂岩優勢な砂岩泥岩互層及び砂岩泥岩等量互層、北亀林道、(c) 砂岩 優勢な砂岩泥岩互層、小石川谷南方の林道、(d) 泥岩優勢な砂岩泥岩互層、二の谷林道、(e) 砂岩泥岩互層に発達する非 対称な正立褶曲、雁巻谷林道、(f) 砂岩泥岩互層に発達する非対称な傾斜褶曲と断層、北亀林道、(g) 破断した砂岩泥岩 互層及び珪長質凝灰岩、雁巻谷(h) 珪長質凝灰岩、二の谷林道、

第3.7図 日和佐ユニット構成岩相の顕微鏡写真
(a)砂岩.西川林道.クロスニコル.(b)細粒なガラス質凝灰岩.二の谷林道.クロスニコル.(c, d)ガラス質結晶凝灰岩.粘土鉱物が格子状に発達する.東谷川.c:クロスニコル,d:オープンニコル.(e)ガラス質結晶凝灰岩.火山岩片を含む. 雁巻谷林道.オープンニコル.(f)ガラス質結晶凝灰岩.火山ガラス片や火山岩片などが,緑泥石化を被る.二の谷林道.オープンニコル.

Q:石英, P:長石, Lv:砂岩中の火山岩片, M:粘土鉱物, Vf:凝灰岩中の火山岩片. Chl:緑泥石.

第3.8図 日和佐ユニットの柱状図(見かけの層序)

層に伴って露出する(第3.8図).西川及び中川沿いや、 海陽町入尾の野根川周辺でまとまった分布を示す。また 海陽町海津の南、本地域東隣の相川沿いでは、破断した 砂岩泥岩互層が、砂岩と繰り返し2層準に分布する、こ の破断した砂岩泥岩互層は、変形の程度がやや強く、砂 岩がレンズ状の岩塊をなすこともある。そのため原・原 (2019) では、この破断した砂岩泥岩互層を牟岐ユニッ トに含めた. しかし牟岐ユニットの砂岩岩塊のみを含む 混在岩ほど変形は強くない.本報告では、この破断した 砂岩泥岩互層を君波ほか(1998)に従い、日和佐ユニッ トに帰属させた. 珪長質凝灰岩は、神山林道、二ノ谷林 道,和田山林道などで,層厚数10m以下で砂岩泥岩互 層及び砂岩中に露出する. これら破断した砂岩泥岩互層 と珪長質凝灰岩は、走向方向へ尖滅する分布を示す.ま た馬路村中ノ川や栃谷川と安田川出会い付近では、後述 の混在相を示す牟岐ユニット中に、日和佐ユニットに特 徴的な整然相を示す砂岩ないし砂岩泥岩互層が層厚100 m以下で分布する、本報告では、これらを牟岐ユニット 中に、断層関係により挟在される日和佐ユニットとして 扱った.

ユニット境界 日和佐ユニットの上限は,深瀬断層に よって谷山ユニットが日和佐ユニットに衝上する. 下限 は,断層を介して日和佐ユニットが牟岐ユニットに衝上 する.日和佐ユニットと牟岐ユニットは,相川やその南, 阿瀬川谷から小川川上流,また魚梁瀬付近などで,断層 を介して両ユニットが繰り返し分布する特徴を示す.特 に阿瀬川谷から小川川上流,また魚梁瀬付近では,北東 -南西走向の右横ずれ変位を示す断層によって,両ユ ニットが切られる.その見かけの右横ずれの変位量は, 約3,000~3,500 m である.

地質構造 日和佐ユニットの地層は、概ね東北東~北 東の走向で、北に高角度で傾斜する. また深瀬断層や小 石川谷周辺の北東 – 南西走向の断層付近では、地層の走 向が断層の走向に沿って北東-南西となる.全体的に, 地層は北傾斜が卓越し,一部南傾斜も認められる.地層 の上位方向は、概ね北方向である、露頭規模では、砂岩 泥岩互層で、褶曲構造が良く観察される. 翼間隔の閉じ た波長数mの褶曲が多く,褶曲軸面が垂直な正立褶曲 (第3.6図e)や、褶曲軸面が70~80°と高角度に傾斜 した傾斜褶曲が頻繁に認められる(第3.6図f).これ らの褶曲では、褶曲軸面に対して、両翼の長さが異なり、 また地層の層厚も変化する非対称褶曲が多く認められ る.5万分の1地質図幅の規模で図示できる褶曲構造は 確認されていない、そのため本ユニットは、露頭規模の 褶曲により傾斜方向は変化するが、大局的には北上位の 同斜構造を示すと考えられる.

地質年代 君波ほか(1998)は、日和佐ユニットを、 H1~H5までの部層に区分した.このうち、H4とH5 部層の泥岩よりカンパニアン期後半の放散虫化石を報告 した.また化石の産出報告のない H1 ~ H3 部層が日和 佐ユニットの構造的上位を占め、古い年代を示す可能性 があることを考慮し、日和佐ユニットの年代をカンパニ アン期とした.一方, H4 部層と H5 部層は、日和佐ユニッ トを特徴づける砂岩や砂岩泥岩互層を主体とするが、少 量のチャートが含まれている。そのため、これら部層の 一部は、牟岐ユニットに対比される可能性もある。

Shibata et al. (2008) は、徳島県牟岐町の海岸に分布 する日和佐ユニットの珪長質凝灰岩及び砂岩よりジルコ ン U-Pb 年代を求めた.その結果、珪長質凝灰岩の最若 粒子集団年代 (YC, 第2.5図参照)の加重平均として 73.5 ± 0.63 Ma (試料 HY2)を、砕屑性ジルコンの最も 若い単一粒子年代 (YSG, 第2.5図参照)として 69.6 ± 3.5 Ma (試料 HY1)と 67.8 ± 2.3 Ma (試料 MPU3) を得た.Shibata et al. (2008)は、測定誤差を考慮して、 これらの年代が重複する 74.1 Ma ~ 65.5 Ma を日和佐ユ ニットの堆積年代の範囲とした.なおこの年代は、カン パニアン期後半~マーストリヒチアン期であり、放散虫 化石年代より若い年代を含む.

Shibata et al. (2008) は、 砕屑性ジルコン U-Pb 年代の 評価において YSG を採用した.一方, Hara et al. (2017) は、後背地における島弧の火成活動が活発な時期に堆積 した日和佐ユニットの場合, 最若粒子集団の加重平均値 (YC) が最若ピーク年代と一致し、さらに泥岩の放散虫 化石年代から推定された堆積年代に近似できるとした. 本報告により, Shibata et al. (2008) のデータを基に, 砕屑性ジルコンの最若粒子集団年代の加重平均値 (YC) を計算すると、73.8 ± 1.8 Ma (試料 HY1, n=10) と 68.4 ± 1.8 Ma (試料 MPU3, n=2) が得られた. Hara et al. (2017) が日和佐ユニットの砂岩から得た最若粒子集 団年代の加重平均値(YC)は、73.4 ± 2.1 Ma である。 最若ピーク年代の加重平均値 (YC) を用いて、すでに 報告されているジルコン U-Pb 年代を比較すると, Shibata et al. (2008) による凝灰岩 U-Pb 年代と試料 HY1の砕屑性ジルコンの最若粒子集団年代(YC).さ らに Hara et al. (2017) による砕屑性ジルコンの最若粒 子集団年代(YC)は、いずれも73.8~73.4 Maの範囲 で一致するといえる. さらにこの年代値は、カンパニア ン期後半であり、君波ほか(1998)により報告された放 散虫化石年代とも一致する. なお Shibata et al. (2008) の試料 MPU3 は、最若粒子を構成するジルコンは2粒 子のみであるため、最若粒子集団としての評価が難しい. そこで、堆積年代としての解釈から除いた方が良いと考 える.以上より,日和佐ユニットの砕屑岩の堆積年代は, カンパニアン期後半とする.

対比 整然相を示す砂岩や砂岩泥岩互層を主体とし、 カンパニアン期後半の地質年代を示すユニットとして、 公文(1981)及び君波ほか(1998)の日和佐累層,石田 (1998)の轟層などに対比される(第2.4図).日本地 質学会編(2016)で示された中川層のうち,北部に分布 する砂岩泥岩等量互層を主体とする部分も本ユニットに 対比される.20万分の1地質図幅「高知」(原ほか, 2018)の日和佐ユニットに対比される.君波ほか(1998) は,北東隣桜谷地域及び東隣甲浦地域において,日和佐 累層を構造的上位からH1~H5までの部層に区分した. 特にH2,H4及びH5部層には,まれにチャートを挟む ことで特徴づけられている.馬路地域では,日和佐ユニッ ト中でチャートが認められないこと,また地層の走向方 向への連続性を考慮して,H2部層のチャートを伴わな い部分ないしH3 部層が分布していると考えられる.

3. 4 牟岐ユニット (Mgd, Mgx, Mgr, Mgc, Mgb, Mgp)

命名・定義 20万分の1地質図「徳島」(徳島県, 1972)において牟岐層と命名されたが、この地質図では、 本報告の谷山ユニットの混在岩も牟岐層に含められてい る. 一方, 公文(1981) 及び君波ほか(1998)は, 四万十 帯白亜系付加コンプレックスの下部を占める混在岩から なる地質体を、牟岐累層として定義した. Hara et al. (2017) は、公文(1981) 及び君波ほか(1998) によ る牟岐累層を牟岐ユニットに変更した. さらに, 馬路地 域の牟岐ユニットは混在岩と千枚岩質泥岩からなると し、また安芸構造線が牟岐ユニットの下限をなすとした. Hara and Hara (2019) は、馬路地域の安芸構造線周辺の 牟岐ユニットについて, 岩相区分と放散虫化石年代及び 砕屑性ジルコン U-Pb 年代の検討を行った. そして牟岐 ユニットを, 非公式単元として Mg1 ~ Mg3 のサブ(亜) ユニットに細分した. Mg1 サブユニットは牟岐ユニッ トの主部をなし、砂岩、チャート及び玄武岩類などの岩 体・岩塊を含む混在岩からなる. Mg2 サブユニットは, 主に千枚岩質泥岩からなり,安芸構造線の直上を占める. Mg3 サブユニットは安芸構造線の直下を占め、泥岩及 び破断した砂岩泥岩互層からなる白亜系として認定され た. 本報告では, Hara et al. (2017) に従い, 安芸構造 線の上盤を構成する Mg1 及び Mg2 サブユニットのみを 牟岐ユニットとした. そして Hara and Hara (2019) の Mg3 サブユニットに対しては、本報告において新たに 釈迦ヶ生ユニットの新称を与える. 牟岐ユニットは, 混 在岩及び千枚岩質泥岩からなるユニットとして定義され る. 本報告では, 主に混在岩からなる牟岐ユニットと, 千枚岩質泥岩からなる牟岐ユニットに分けて記載する.

3.4.1 主に混在岩からなる牟岐ユニット (Mgd, Mgx, Mgr, Mgc, Mgb)

分布・模式地 混在岩は,魚梁瀬貯水池,安田川上流 域,小川川上流にかけて広く分布する.また海陽町久尾 や相川周辺にも分布する.本地域での模式地を谷山北谷 及び谷山南谷とし,そのルートマップを第3.9回に示す. 岩相 著しく破断した岩塊を含む混在岩と破断した砂 岩泥岩互層を特徴とする.混在岩は、これに含まれる岩 塊の種類により、砂岩岩塊のみを含む混在岩と、砂岩・ 多色泥岩・チャート・玄武岩類を岩塊として含む混在岩 に分けた.またそれぞれ、破断した砂岩泥岩互層を頻繁 に伴う.そこで地質図上では、砂岩岩塊のみを含む混在 岩及び破断した砂岩泥岩互層(Mgd)と砂岩・多色泥岩・ チャート・玄武岩類岩塊を含む混在岩及び破断した砂岩 泥岩互層(Mgx)に岩相区分した.また砂岩・多色泥岩・ チャート・玄武岩類を岩塊として含む混在岩には、多色 泥岩(Mgr)・チャート(Mgc)・玄武岩類(Mgb)の岩 体が伴われる.

破断した砂岩泥岩互層は、変形により破断相を示した 砂岩泥岩互層である(第 3. 10 図 a). 主に砂岩泥岩等量 互層ないし泥岩優勢な砂岩泥岩互層が破断される.破断 の程度として、砂岩層が膨縮しブーディン構造を示す. また砂岩層の破断が進み、砂岩がレンズ状の岩塊となる こともある.本報告では、ブーディン構造が顕著な場合 について,破断した砂岩泥岩互層を用いた.砂岩岩塊が 顕著な場合は、後述の砂岩岩塊のみを含む混在岩とした. 破断された砂岩は数 cm ~数10 cm の層厚を示すことが 多く,まれに1mの層厚を示す.また数mの層厚を示 す砂岩を伴うことがある.砂岩は、細粒~中粒ないし粗 粒で、淘汰の悪い石質砂岩を特徴とする、石英・珪長質 火山岩片を多く含み,長石や深成岩片などを含む.また 石英細脈の発達や砂岩及び泥岩の未固結変形による延性 流動がしばしば認められる(第3.11図a, b). 長石は, 曹長石化(ソーシュライト化)を受け、変質しているこ とがある.砂岩泥岩互層中の泥岩は、黒色~暗灰色を呈 し、微細な粘土鉱物に富み、石英・長石・炭質物などの 不透明鉱物などを含む、まれに葉理を示すが、鱗片状劈 開を伴っていることが多い.

砂岩岩塊のみを含む混在岩は、砂岩泥岩互層の砂岩層 が著しく破断した混在相を示し、レンズ状岩塊として、 泥岩中に含まれる混在岩である(第3.10図b).砂岩岩 塊のみから構成される混在岩である.混在岩中には、ブー ディン構造を示す砂岩層の破断相も認められる.砂岩岩 塊は、短径の厚さが数 cm ~数10 cm を示す.剪断変形 により、砂岩岩塊が非対称に尾を引く形態を示すことが ある.主に砂岩泥岩等量互層ないし泥岩優勢な砂岩泥岩 互層が、強い変形を受けている.まれに層厚数 cm の破 断した珪長質凝灰岩を伴う.

砂岩・多色泥岩・チャート・玄武岩類岩塊を含む混在 岩は、砂岩・多色泥岩・チャート・玄武岩類が破断し混 在相を示し、これらの岩塊がレンズ状を呈し泥岩中に含 まれる混在岩である(第3.10図 c).多色泥岩・チャー ト・玄武岩類の岩体は、この混在岩に伴って分布する. これらの混在岩は、剪断変形を受けて、S-C面(ないし P-Y面)からなる複合面構造が発達することがある。剪

第3.9図 主に混在岩からなる牟岐ユニットのルートマップ 魚梁瀬貯水池西方の谷山北谷及び谷山南谷周辺. 岩相の凡例記号は地質図を参照.

断面は、延性剪断帯ではC面、脆性剪断帯ではY面と 呼ばれる.この剪断面に対し、最大30°程度で斜交し、 レンズ状岩塊の長軸の方向に平行となる劈開面が、S面 ないし Y 面と呼ばれる. また S 面に対し反対方向に低 角度で斜交する剪断面が認められることもあり、これは シアーバンドないしR1面(リーデル剪断面)と呼ばれる. C面やシアーバンドに沿って、幅数10 cm以下の破砕帯 を伴う断層が発達することがある. 泥質基質部では、こ の様な複合面構造に沿って、鱗片状劈開が顕著に発達す る. これらの複合面構造や鱗片状劈開の発達、また断層 の発達により、混在岩の泥質基質は非常に剥離性が高く 崩れやすい(第3.10図d). 鏡下で泥質基質では、粘土 鉱物の定向配列及びシルト大の石英や不透明鉱物ととも に, 鱗片状劈開が黒色不透明な黒い筋からなる圧力溶解 劈開として観察される. 岩塊は, S面に沿って伸び, 短 径の厚さが数 cm ~ 数 10 cm を示す. 剪断変形により, 砂岩岩塊が非対称に尾を引く形態を示すことがある。鏡 下では、非対称組織を示す岩片やシルト大の石英で、プ レッシャーシャドウが観察されることもある.

多色泥岩は,淡~暗緑色,赤色~赤褐色や淡~暗灰色 を呈する珪質泥岩である.様々な色を呈し,色合いも漸 移するため,地質図上では多色泥岩と一括して図示した. 多色泥岩は,微晶質な石英と粘土鉱物から構成され,シ ルト大以上の砕屑粒子はほとんど含まない.赤色チャー トと互層する珪質泥岩は赤色~赤褐色ないし暗緑色を, 凝灰質な珪質泥岩では淡緑色ないし淡~暗灰色を呈する ことが多い.多色泥岩は,混在岩中に岩片として,また チャートと互層ないし接して露出する.なお玄武岩火山 砕屑岩に伴われる赤~暗赤色泥岩は,主に玄武岩を起源 とする凝灰岩であるため,玄武岩類に含めた.

チャートは、主に赤色〜赤褐色、暗〜淡灰色を呈し、 一般に多色泥岩と互層し、層状チャートをなす(第3.10 図 e). チャートと多色泥岩の割合はほぼ等量で、それ ぞれ単層の厚さは、約10 cm 以下である.またまれに珪 長質凝灰岩が挟在する(第3.10 図 f).また多色泥岩の 挟みがない、塊状チャートも認められる.特に玄武岩類 近傍では塊状チャートとなることが多い、鏡下では、隠 微晶質〜微晶質な石英及び不透明鉱物や石英脈が良く観 察され、放散虫化石はほとんど観察されない(第3.11 図 c).本ユニットのチャートから、放散虫化石の産出 報告は非常にまれである.原・原(2019)は、チャート よりサントニアン期後半〜カンパニアン期前半の放散虫 化石を報告した.

玄武岩類は、暗赤色~茶褐色ないし暗緑色を呈する玄 武岩溶岩と火山砕屑岩からなる、溶岩は、塊状ないし枕 状を呈する(第3.10図g,h).また、枕状溶岩には、 その間隙を埋める石灰岩(inter-pillow limestone)が認め られることがある(第3.11図d).玄武岩溶岩は、一般 に半完晶質で、主に斜長石、単斜輝石、不透明鉱物から 構成され、緑泥石や緑れん石などの二次的鉱物を伴う. そして、針状ないし短冊状の斜長石と、その間を充填す る細粒な単斜輝石からなる間粒状(インターグラニュ ラー)組織を示す玄武岩(第3.11図e)、充填する粒子 が単斜輝石や二次鉱物及び隠微晶質鉱物からなるイン ターサータル組織を示す玄武岩、無斑晶質玄武岩(第 3.11図f)からなる、火山砕屑岩は、溶岩が破砕され

第3.10図 主に混在岩からなる牟岐ユニットの岩相

 (a)砂岩岩塊のみを含む混在岩、槇の谷林道.(b)砂岩岩塊のみを含む混在岩、破線は砂岩岩塊の境界を示す.押谷線.(c) チャートを含む混在岩と玄武岩岩体.破線より上側が玄武岩で,下側が混在岩からなる.北亀谷林道.(d)変形の進んで 劈開が形成された混在岩.北栃谷林道.(e)チャート及び多色頁岩.裏政林道.(f)チャート及び珪長質凝灰岩.破線がチャー トと珪質凝灰岩の境界を示す.谷山林道.(g)塊状玄武岩溶岩及び泥岩.写真の右側が塊状玄武岩で,左側が泥岩からなる. 北亀谷林道.(h)枕状玄武岩溶岩.相川の枝沢.
 Ss:砂岩,Md:泥岩,Rm:赤色泥岩,Ch:チャート,Ba:玄武岩.

-26-

第3.11 図 主に混在岩からなる牟岐ユニット構成岩相の顕微鏡写真
(a) 砂岩. 亀谷橋. クロスニコル. (b) 未固結変形を示す石質砂岩. 白い破線内は, 延性流動をした泥質部分を示す. 亀谷橋. オープンニコル. (c) チャート. 東川橋南西. オープンニコル. (d) 枕状溶岩の間隙を埋める石灰岩 (inter-pillow limestone). 写真の下側(暗色部)が玄武岩で,上側(明色部)が再結晶化した石灰岩. 野根川上流. オープンニコル. (e) インターグラニュラー組織を示す玄武岩溶岩. 北亀谷. 左の写真がクロスニコル. 右写真がオープンニコル. (f) 無斑晶 質玄武岩溶岩. 東谷川の林道. 左の写真がクロスニコル. 右の写真がオープンニコル.
Q:石英, Qv:石英脈. P:長石, Lv:火山岩片, Cpx:単斜輝石.

再堆積したもので,玄武岩岩片や斜長石,単斜輝石など からなる砕屑岩である.溶岩が急冷され,ガラス質な部 分を持つ,水冷破砕岩(ハイアロクラスタイト)も認め られる.火山砕屑岩には,微晶質な赤鉄鉱を多産し,赤 ~暗赤色を呈する玄武岩起源の凝灰岩も含まれる.

徳島県牟岐町の海岸沿いに分布する牟岐ユニットの一部の玄武岩類は、陸源堆積物である泥岩と互層して産出し、また玄武岩に急冷周縁相が認められること、玄武岩中に黒色泥岩のゼノリスを含むことなどから、現地性の玄武岩として解釈されている(君波ほか,1992).また玄武岩の化学組成は、中央海嶺玄武岩(君波ほか,1992;中村ほか,2000)や島弧ソレアイト(麻木・吉田,1998,1999)の特徴を示すことが指摘されている.この砕屑岩中に含まれる現地性玄武岩の成因として、クラー太平洋海嶺が海溝付近において活動していた説(君波ほか,1992;Kiminami et al., 1994),前弧域で海洋プレートの沈み込みによる島弧火成活動が生じていた説(麻木・吉田,1998)が考えられている.

見かけの層序 牟岐ユニットの見かけの層序を第 3.12 図に示す.砂岩岩塊のみを含む混在岩と砂岩・多 色泥岩・チャート・玄武岩類岩塊を含む混在岩の2つの 混在相が,破断した砂岩泥岩互層を伴い,断層関係によっ て繰り返し露出する. それぞれの層厚はともに、約1,000 ~ 3,000 m である. 馬路~魚梁瀬では. 砂岩岩塊のみを 含む混在岩と砂岩・多色泥岩・チャート・玄武岩類岩塊 を含む混在岩の繰り返しが顕著に認められる。砂岩・多 色泥岩・チャート・玄武岩類岩塊を含む混在岩には,多 色泥岩・チャート・玄武岩類の岩体が含まれる. これら の層厚は約100m以下が多く、大きい岩体では層厚300 ~ 500 m を示す. この様な混在岩と岩体は, 馬路村馬路 ~魚梁瀬周辺,海陽町久尾周辺,海陽町船津周辺の3地 域に分布する. また久尾では、安芸構造線の直上では、 後述の千枚岩質泥岩を伴い、砂岩岩塊のみを含む混在岩 が, 層厚 100~800 m で分布する. 海津では, 玄武岩類 (Mgb) 及び玄武岩類の岩塊を伴う混在岩が、向斜を伴 い層厚1,000m以下で分布する.また貧田丸の南の林道 沿いでは、多色泥岩及びチャート岩塊を含む混在岩と砂 岩岩塊のみを含む混在岩が分布する。これら貧田丸南で 認められる混在岩は、海津周辺に分布する混在岩の走向 方向延長に相当するが、後述の北北西 - 南南東走向の胴 切断層である東谷川断層によって,走向が東西に振れる.

ユニット境界 牟岐ユニットの上位に、断層を介して 日和佐ユニットが衝上する.下位には、安芸構造線、犬 咲断層、馬路断層を介して、海部ユニットないし東川ユ ニットに衝上する.また牟岐ユニットと日和佐ユニット は、北東 – 南西走向の断層により切られ、右横ずれ変位 を伴い繰り返し分布する.その見かけの右横ずれの変位 量は、約3,000 ~ 3,500 m である.

地質構造 牟岐ユニット内には、数多くの断層が発達

する.本報告では,砂岩岩塊のみを含む混在岩及び破断 した砂岩泥岩互層(Mgd)と砂岩・多色泥岩・チャート・ 玄武岩類を岩塊として含む混在岩及び破断した砂岩泥岩 互層(Mgx)の2つの混在相の関係についても断層関係 とした. 牟岐ユニットの地層及び鱗片状劈開面は,概ね 東北東走向を示し,北ないし南に高角度で傾斜する.海 陽町皆津や中谷周辺,また馬路村魚梁瀬で,半波長数 100 m の地質図規模で向斜及び背斜が認められる.

地質年代 泥岩よりカンパニアン期後半~マーストリ ヒチアン期前半を示す放散虫化石の産出報告がある (Hara et al., 2017; Hara and Hara, 2019). 一方, 砂岩の 砕屑性ジルコン U-Pb 年代は, 64.1 ± 2.1 Ma の最若粒 子集団年代 (YC) を持ち, 放散虫化石年代より明らか に若い暁新世前半を示す (Hara et al., 2017). Hara et al. (2017) は、 牟岐ユニットを構成する海洋プレート層 序を想定した場合、泥岩より砂岩の方が若い年代を示す 可能性があることから,砂岩から得られた砕屑性ジルコ ン年代も堆積年代に含めた. また Shibata et al. (2008) による徳島県牟岐町に分布する牟岐ユニット中の珪長質 凝灰岩 U-Pb 年代は、水落断層の上盤では 73~69 Ma, 下盤では 63~61 Maと、カンパニアン期最後半~ 暁新 世前半のダニアン期の範囲にある.以上のことから,主 に混在岩からなる牟岐ユニットの地質年代を、放散虫化 石年代とジルコン年代が重複するカンパニアン期後半~ ダニアン期とする.

対比 主に混在岩からなり、カンパニアン期後半~ダ ニアン期の地質年代を示すユニットとして、公文(1981) 及び君波ほか(1998)の牟岐累層、石田(1998)の朔丸 メランジュや伊勢田コンプレックスなどに対比される (第2.4図). また石田(1998)は、君波ほか(1998) による日和佐累層のうち、チャートが挟まれる H2 部層 やH4部層の一部を、混在相からなる地層として樫ノ瀬 層・神野層と定義した.本報告では、日和佐ユニットと 牟岐ユニットは、断層により繰り返し分布することを考 慮し、これらの混在相を示す地層を牟岐ユニットに対比 させた(第2.1図).日本地質学会編(2016)で示され た魚梁瀬メランジュも本ユニットに対比される。牟岐町 の海岸沿いに分布する牟岐メランジュ(Matsumaru et al., 2003 ; Ikesawa et al., 2005 ; Kitamura et al., 2005) に対比される.20万分の1地質図幅「高知」(原ほか, 2018)の牟岐ユニットに対比される.

3. 4. 2 主に千枚岩質泥岩からなる牟岐ユニット(Mgp) 分布・模式地 魚梁瀬ダム周辺, 東川川, 中ノ川川周 辺では, 層厚約 500 m で分布する. 東に向かい分布幅が 狭まり竹屋敷林道付近では約 200 m となり, 次第に尖滅 する. また海陽町久尾西方の林道沿いでは, 50 m 幅で 分布し, 東に向かい尖滅する. 千枚岩質泥岩が良く観察 される東川川沿いを, 本報告での模式地とし, そのルー

第3.12図 牟岐ユニットの柱状図(見かけの層序)

トマップを第3.13 図に示す.

岩相 主に千枚岩質泥岩からなり,まれに破断した砂 岩千枚岩質泥岩互層を伴う (Mgp).

千枚岩質泥岩は、泥岩ないしシルト岩が変成作用を受 け、層理面に平行ないしやや斜交して片理面が形成され 千枚岩質となっている(第3.14図a, b). 暗灰色ない し黒色を呈する.灰色の凝灰質ないし珪質な千枚岩質泥 岩を伴うことがある.細粒な凝灰岩質の千枚岩質泥岩は、 表面が光沢をなすこともある(第3.14図 c). 顕微鏡下 では, 泥質部で, 片理面に沿って粘土鉱物の定向配列が よく観察される(第3.15図a,b). 千枚岩質泥岩から 分離した主にイライトからなる粘土鉱物濃集試料の K-Ar 年代として, 48.4 ± 1.1 Ma (試料 MP02) 及び 42.9 ± 0.9 Ma (試料 MP01) が得られている (Hara et al., 2017). ま た千枚岩質泥岩の最大被熱温度は、炭質物のラマン分光 計解析により,約270~280℃と見積もられている(Hara et al., 2017). 千枚岩質泥岩中には、ブーディン構造な いしレンズ状の形態を示す破断した砂岩が含まれること がある (第3.14図d).

破断した砂岩千枚岩質泥岩互層は、泥岩優勢な砂岩千 枚岩質泥岩互層が破断した岩相である.砂岩は、千枚岩 質泥岩中にブーディン構造ないしレンズ状の形態をなし ている.砂岩の層厚は、一般に、数 cm ~ 10 cm ないし 20 cm 程度である.千枚岩質泥岩と砂岩の割合は、9 対 1~8 対 2 程度である.砂岩は、極細粒~細粒で、暗灰 色~淡灰色を呈する.牟岐ユニットの砂岩としては細粒 な粒子である.淘汰の悪い珪長質火山岩片を多く含む石 質砂岩を特徴とし、石英及び長石や深成岩片などを含む (第3.15 図 c, d).長石は、しばしば曹長石化(ソーシュ ライト化)を受け、変質している.石英脈や方解石脈が 発達することがある.また千枚岩質泥岩中の砂岩は、混 在岩中の砂岩と同様の砂岩組成及び化学組成の特徴を示 す (Hara and Hara, 2019).

見かけの層序 東川川では,千枚岩質泥岩と破断した 砂岩千枚岩質泥岩互層が,数10m程度で繰り返す(第 3.13回).層厚約5mの砂岩も認められ,この砂岩より 砕屑性ジルコンU-Pb年代測定が行われた(Hara et al., 2017).その他の中ノ川川や魚梁瀬ダム周辺,竹屋敷林道, 海陽町久尾西方の美濃ヶ谷沿いの林道では,千枚岩質泥 岩が優勢である(第3.12回).これらの地域では,破 断した砂岩千枚岩質泥岩互層を伴うことはまれである.

ユニット境界 主に千枚岩質泥岩からなる牟岐ユニッ トの上限は、中ノ川川及び東川川では断層で絶たれ、そ の上位の日和佐ユニットの砂岩泥岩互層と接する.魚梁 瀬ダム周辺や竹屋敷林道では、主に混在岩からなる牟岐 ユニットと接する.また下限は、安芸構造線によって下 位の釈迦ヶ生ユニットと接する.そして、白亜系の釈迦ヶ 生ユニット、古第三系の東川ユニットの破断した砂岩泥 岩互層及び海部ユニットの砂岩に衝上する. 地質構造 千枚岩質泥岩ないし破断した砂岩泥岩互層 は、概ね東北東走向で北ないし南に高角度で傾斜する. 地層の走向は、中ノ川断層や犬吠断層とほぼ平行であり、 またこれらの断層と平行な小断層も多く発達する. 馬路 断層沿いの中ノ川川では、走向はやや北東に振れる.

地質年代 千枚岩質泥岩から化石年代は得られていない. 砕屑性ジルコン U-P 年代の最若粒子集団年代 (YC) は、65.2 ± 1.6 Ma で白亜紀末~暁新世前半を示す.また千枚岩質泥岩に挟まれる砂岩は、その砂岩組成及び化学組成,砕屑性ジルコン U-Pb 年代の分布パターンの特徴が、混在岩中の砂岩と一致する (Hara et al., 2017). そこで、混在岩中の砂岩と同様に、千枚岩質泥岩中の砂岩の堆積年代もカンパニアン期後半~暁新世前半のダニアン期とされた.本報告でも、Hara et al. (2017) に従い、主に千枚岩質泥岩からなる牟岐ユニットの堆積年代をカンパニアン期後半~ダニアン期とする.

対比 須鎗・山崎(1987)は、東隣甲浦地域の海陽町 北河内で、安芸構造線の上盤に黒色千枚岩が分布すると した. この黒色千枚岩は、 牟岐ユニットの千枚岩質泥岩 に相当する.須鎗・山崎(1988)は、安芸構造線が魚梁 瀬ダムの北に通るとし、この安芸構造線の南側2kmの 範囲で黒色泥岩が千枚岩化しているとした.日本地質学 会構造地質部会編(2012)は、海陽町久尾における安芸 構造線を紹介し、その上盤は千枚岩質泥岩からなるとし た. 日本地質学会編(2016)では、安芸構造線の位置は 本報告とほぼ一致し,魚梁瀬ダムのすぐ南を東西に通り, そして上盤の魚梁瀬メランジュ(本報告の牟岐ユニット) については、一部の泥岩が千枚岩状になっていることが 報告された、これらの安芸構造線の上盤において、千枚 岩質泥岩として記載されている岩相に対比される。また Hara et al. (2017) では、魚梁瀬ダム周辺で、千枚岩質 泥岩が安芸構造線の上盤に幅500m程度で分布するとし た. そして Hara and Hara (2019) は, 牟岐ユニットで 千枚岩泥岩によって特徴づけられる Mg2 サブユニット が本ユニットに相当する.

3.5 釈迦ヶ生ユニット (Shd)

命名・定義 Hara and Hara (2019) は、安芸構造線の 下盤に白亜系付加コンプレックスの存在を見出し、これ を Mg3 サブユニットとした.本報告では、Mg3 サブユ ニットを釈迦ヶ生ユニットと新称する.釈迦ヶ生ユニッ トは、破断した砂岩泥岩互層及び泥岩からなる地質体と して定義される.地理的名称は、模式地の高知県北川村 釈迦ヶ生に由来する.

分布・模式地 魚梁瀬ダム南方の北川村釈迦ヶ生を模 式地とし、東川川、中ノ川川周辺で、幅約500mで分布 する. なお海陽町久尾付近の野根川沿いの安芸構造線の 下盤側には露出しない. 河床沿いで露頭が良く観察され

第3.13 図 主に千枚岩質泥岩からなる牟岐ユニット, 釈迦ヶ生ユニット, 東川ユニットのルートマップ 東川川上流周辺. 岩相の凡例記号は地質図を参照.

る東川川沿いのルートマップを第3.13図に示す.

岩相 破断した砂岩泥岩互層及び泥岩からなる(Shd). 破断した砂岩泥岩互層は、泥岩優勢な砂岩泥岩互層ないし砂岩泥岩等量互層が破断を受けて形成されたものである.泥岩優勢な砂岩泥岩互層では、泥岩と砂岩の割合は約9対1~6対4であり、変化に富む.砂岩の層厚は、数 cm ~数 10 cm であることが多いが、数 m に達することもある.また整然相を示す砂岩泥岩互層もまれに認められる.一般に、厚さ約数 cm ~ 10 cm の砂岩層は膨縮が著しく、ブーディン構造を示す(第3.16 図 a).河川沿いの露頭では、破断した砂岩泥岩互層に伴い、含礫泥岩が認められる.砂岩礫には、未固結時の変形を示唆する、泥注入や、泥岩中への分断が認められる(第3.16 図 b).また延性流動を受けている細粒で、淡緑色ないし灰色を呈する珪長質凝灰岩も認められる(第3.16 図 c). これら未固結変形を示す砂岩や珪長質凝灰岩は鏡下 でも観察ができ(第3.17図a), 釈迦ヶ生ユニットの特 徴となる.しかし,河川沿いの露頭以外,林道沿いの露 頭などでは風化や植生により,この様な未固結時変形の 識別は難しい.本ユニットの砂岩は,暗灰色~淡灰色を 呈し,一般に淘汰が悪く,珪長質火山岩片を含む石質砂 岩で,長石や深成岩片,雲母などを含む(第3.17図b). また本ユニットの砂岩は,牟岐ユニットの砂岩と同様の 砂岩組成及び化学組成の特徴を示す(Hara and Hara, 2019).

泥岩は,層厚約数10mの塊状な泥岩(第3.16図d)で, 破断した砂岩泥岩互層と繰り返し露出する.泥岩の一部 には,砂岩のレンズ状岩塊を含むことがある.泥岩には, 鏡下において弱いながら粘土鉱物の定向配列が観察され る.

第3.14図 主に千枚岩質泥岩からなる牟岐ユニットの岩相
 (a) 千枚岩質泥岩.魚梁瀬ダム.(b) 千枚岩質泥岩.中ノ川川.(c) 凝灰岩質な千枚岩質泥岩.魚梁瀬ダム.(d) 砂岩岩 塊を伴う千枚岩質泥岩.
 Ss:砂岩.東川川.

見かけの層序 釈迦ヶ生ユニットの見かけの柱状図を 第3.18 図に示す.破断した砂岩泥岩互層は層厚約20 ~180 m,泥岩は層厚約20~50 mで,交互に繰り返し 露出する.破断した砂岩泥岩互層が泥岩より卓越し,破 断した砂岩泥岩互層と泥岩の割合は,約8対2である. 本ユニットは,概ね東北東走向で北ないし南に高角度な 姿勢を示す安芸構造線及び犬吠断層に挟まれて露出す る.

ユニット境界 本ユニットの上位には,安芸構造線を 介して牟岐ユニットが衝上する.また下位には,犬吠断 層を介して,東川ユニットに衝上する.

地質構造 釈迦ヶ生ユニットの層理及び鱗片状劈開 は、概ね東北東走向で北ないし南に高角度で傾斜する. これらは、安芸構造線や犬吠断層とほぼ平行である.ま たこれらの断層と平行な断層も、本ユニット中に多く発 達する.馬路断層沿いの中ノ川川では、層理及び鱗片状 劈開の走向はやや北東に振れる.

地質年代 Hara and Hara (2019) は、本ユニットに相 当する彼らの Mg3 サブユニットの泥岩から、サントニ アン期~マーストリヒチアン期前半を示す放散虫化石を 報告し、牟岐ユニットよりやや古い群集を含むとした. 一方 Hara and Hara (2019) は,砕屑性ジルコン U-Pb 年 代は、67.5 ± 1.0 Ma の最若粒子集団年代を持ち,放散 虫化石年代より若いマーストリヒチアン期後半を示し、 本ユニットの砂岩から得られた砕屑性ジルコンの年代分 布パターンが、牟岐ユニットの砂岩と同様の傾向を示す ことを明らかした.そのため、牟岐ユニットと同様に、 堆積年代はダニアン期まで含む可能性があるとした.本 報告では、Hara and Hara (2019)の見解に従い、本ユニッ トの堆積年代を、カンパニアン期後半~ダニアン期とす る.

対比 安芸構造線の下盤をなし,泥岩及び破断した砂 岩泥岩互層からなる四万十帯白亜系コンプレックスは, 本地域に分布する釈迦ヶ生ユニットのみで,これに対比 可能な地質体は他地域には認められない.従来は, 四万十帯古第三系コンプレックスの奈半利川層(日本地 質学会編,2016)ないし奈半利川ユニット(Hara *et al.*, 2017)に対比されていた.

3.6 産出化石

前節の各ユニットの記載でも一部述べたが、本地域の

第3.15図 主に千枚岩質泥岩からなる牟岐ユニット構成岩相の顕微鏡写真

 (a, b) 千枚岩質泥岩.粘土鉱物の定向配列が認められる.東川川.a:クロスニコル,b:オープンニコル.(c) 砂岩.
 東川川.クロスニコル.(d) 砂岩.石英脈と方解石脈が発達する.東川川.クロスニコル.
 Q:石英,P:長石,Lv:火山岩片,Cal:方解石.

四万十帯白亜系付加コンプレックスからは、チャートや 泥岩から、わずかであるが放散虫化石の産出報告がある. また周辺地域からは、放散虫化石及びアンモナイト化石 の報告がある.本地域における放散虫化石の産出地点を 付図に、代表的な放散虫化石を第3.19図に、産出リス トを表3.1表に示す.なお後期白亜紀の放散虫化石に 基づく年代論は、Hollis and Kimura (2001)及び Hashimoto *et al.* (2015) に従う.

谷山ユニット 伊尾木川流域に分布するチャートよ り, Hiscocapsa asseni, Thanarla brouweri, 及び Thanarla lacrimula の放散虫化石の報告があり, その年代はバレ ミアン期末~アプチアン期前半である(試料 UM14-100903;原・原, 2019).原・原(2019)は, 馬路地域 及び周辺地域のチャート及び赤色泥岩より産する放散虫 化石年代を取りまとめ,谷山ユニットのチャートは少な くともバランギニアン期~セノマニアン期を,赤色泥岩 はバレミアン期~セノマニアン期の年代を示すことを述 べている. 本地域の泥岩からは、産出化石の報告はない. 北隣の 北川地域では、中川ほか(1980)が、海部川上流の泥岩 から、Artostrobium urna、Amphipyndax stocki などの放散 虫化石を報告し. その年代をコニアシアン期〜サントニ アン期とした. さらに北東隣の桜谷地域の泥岩から、コ ニアシアン期〜サントニアン期の放散虫化石の報告があ る(中川ほか、1980;君波ほか、1998). 原ほか(2012) では、槇木屋谷沿いの林道より、Alievium cf. superbum, Diacanthocapsa brevithorax, Diacanthocapsa euganea, Dictyomitra multicostata, Hemicryptocapsa prepolyhedra, Pseudoaulophacus putahensis などの放散虫化石を報告し、 その年代をチューロニアン期とした. 原ほか(2012)で 報告された黒色泥岩中の放散虫化石群集は、中川ほか (1980) 及び君波ほか(1998)の報告よりやや古い放散 虫化石を含む.

日和佐ユニット 本地域では、化石産出の報告はない. 東隣の甲浦地域の泥岩や珪長質凝灰岩より、 Amphipyndax enesseffi, Amphipyndax tylotus, Dictyomitra

第3.16 図 釈迦ヶ生ユニットの岩相 (a) 破断した砂岩泥岩互層.東川川.(b) 砂岩礫及び珪長質凝灰岩礫を含む含礫泥岩.東川川.(c) 延性流動変形を示す 珪長質凝灰岩.東川川.(d) 泥岩.東川川. Ss:砂岩, Md:泥岩, Tuff:珪長質凝灰岩.

第3.17図 釈迦ヶ生ユニット構成岩相の顕微鏡写真 (a) 延性流動変形を示す凝灰岩と砂岩の岩片を含む泥岩.東川川.(b)砂岩.東川川の河床. Ss:砂岩.Tuff:珪長質凝灰岩.Q:石英,P:長石,Lv:火山岩片,M:雲母鉱物片.

第3.18図 釈迦ヶ生ユニットの柱状図(見かけの層序)

koslovae, Pseudoaulophacus floresensis, Pseudoaulophacus pargueraensis, Pseudoaulophacus lenticulatus などカンパ ニアン期後半〜マーストリヒチアン期を示す放散虫化石 の報告がある(君波ほか, 1998). 君波ほか(1998)は, D. koslovae などマーストリヒチアン期を生存期間として 持たない種の産出から, カンパニアン期後半に対比され る可能性を指摘した.

牟岐ユニット 桑ノ木山西方の裏政谷林道の チャートより, Artostrobium urna, Dictyomitra formosa, Dictyomitra koslovae などのサントニアン期~カンパニア ン期を示す放散虫化石の報告がある(試料 UM15-82803;原・原, 2019).原・原(2019)は、牟岐ユニッ トに含まれるチャートは、海嶺を伴う若い海洋プレート 上で堆積し、また海嶺がすぐに海溝に達し沈み込んだた め、チャートの堆積期間が短くなっていることを指摘し た. 魚梁瀬貯水池の小石川橋の南及び野根川上流の林道沿 いの泥岩より, Amphipyndax tylotus, Archaeodictyomitra lamellicostata などのカンパニアン期後半〜マーストリヒ チアン期前半を示す放散虫化石群集の産出報告がある (試料 R1 及び R2; Hara et al., 2017; Hara and Hara, 2019).

本地域以外では、君波ほか(1998)は、東隣の甲浦地 域において、泥岩よりカンパニアン期後半の放散虫化石 を報告している、山崎ほか(1993)は、西隣の土佐土居 地域の猿押林道沿いの泥岩より、カンパニアン期後半~ マーストリヒチアン期前半の放散虫化石を報告してい る、また模式地である牟岐町付近では、須鎗・山崎(1987) が牟岐町中村の凝灰質泥岩より、カンパニアン期前半の 放散虫化石を、石田・橋本(1998)が牟岐町の海岸に露 出する緑色泥岩より、カンパニアン期後半~マーストリ ヒチアン期前半の放散虫化石を報告している.

R3 ~ R5 は放散虫化石産出層準, N1・N1-t・M3 はジルコン年代試料採取層準, MP02 は K-Ar 年代測定試料採取層準を示す (Hara *et al.*, 2017; Hara and Hara, 2019).

第3.19図 四万十帯白亜系付加コンプレックスから産出する白亜紀放散虫化石

1: Archaeodictyomitra lamellicostata (R5). 2: Archaeodictyomitra sliteri (R5). 3, 4, 5: Dictyomitra koslovae (R5, R2, and R4). 6: Amphipyndax pseudoconulus (R5). 7, 8: Amphipyndax tylotus (R5). 9, 10: Amphipyndax stocki (R3). 11: Stichomitra compsa (R4). 12: Stichomitra manifesta (R4). 13: Foremanina schona (R5). 14: Immersothorax cyclops (R4). 15: Rhopalosyringium magnificum (R5). 16: Carpocanopsis costatum (R5). 17, 18: Myllocercion acineton (R2 and R5). 19: Cryptamphorella sphaerica (R5). 20: Cryptamphorella macropora (R4). 21: Artostrobium tina (R3). 22: Artostrobium urna (R3). 23: Theocampe salillum (R3). 24: Theocampe altamonetensis (R5). 25: Cornutella californica (R3). 26, 27: Afens liriodes (R5). 28: Alievium gallowayi (R5). 29: Pseudoaulophacus praeflorensis (R4). 30: Praeconocaryomma universa (R4). スケールは100 µ m. Hara and Hara (2019) より転載した. R2 ~ R5 は、試料番号を示す.

文献	4	1	*2		*	3	
ユニット	Tn	Mg	Mg	Mg	Sh	Sh	Sh
岩相	ch	ch	md	md	md	md	md
各文献での試料番号	*4	*5	R1	R2	R3	R4	R5
放散虫化石							
Afens liriodes							٠
Alievium gallowayi							٠
Alievium superbum		•			٠	٠	
Amphipyndax ellipticus						٠	
Amphipyndax pseudoconulus			•				٠
Amphipyndax tylotus				•			٠
Amphipyndax cf. tylotus			•				
Amphipyndax stocki			•		٠	٠	٠
Archaeodictyomitra lamellicostata			•	•			٠
Archaeodictyomitra simplex			•		٠		
Archaeodictyomitra sliteri							٠
Archaeospongoprunum hueyi					٠		
Artostrobium tina					٠		
Artostrobium urna		•			٠		
Carpocanopsis costatum				٠			٠
Cornutella californica					٠		
Cryptamphorella conara		•					
Cryptamphorella macropora						٠	
Cryptamphorella sphaerica			•		٠	٠	٠
Dictyomitra formosa		•			٠	٠	
Dictyomitra densicostata			٠				
Dictyomitra koslovae		•		•	٠	٠	٠
Foremanina schona				٠			٠
Hiscocapsa asseni	٠						
Immersothorax cyclops					٠	٠	
Lithomelissa amazon			٠				
Myllocercion acineton				٠			٠
Patellula euessceei					٠		
Praeconocaryomma universa		•				٠	
Pseudoaulophacus praeflorensis						٠	
Pseudoaulophacus cf. praeflorensis		•					
Pseudotheocampe abschnitta			•				
Rhopalosyringium kleinum					٠		
Rhopalosyringium magnificum							٠
Stichomitra asymbatos			٠				
Stichomitra compsa					٠	٠	
Stichomitra manifesta					•	•	
Thanarla brouweri	٠						
Thanarla lacrimula	•						
Theocampe altamontensis							٠
Theocampe salillum						٠	

第3.1表 馬路地域から産出する白亜紀放散虫化石

Tn:谷山ユニット. Mg:牟岐ユニット. Sh:釈迦ヶ生ユニット. ch:チャート. md:泥岩. *1:原・原 (2019). *2:Hara et al. (2017). *3:Hara and Hara (2019). *4:UM14–100903. *5:UM15–82803.

牟岐町古牟岐では、須鎗ほか(1967)により、マース トリヒチアン期を示唆する Gaudryceras cf. kayeiのアン モナイト化石の報告がある.須鎗・山崎(1987)は、こ のアンモナイト化石産出地点近傍から、始新世放散虫化 石が産出することから、このアンモナイト化石は再堆積 した化石と考えた.また辻野ほか(2010)によって、マー ストリヒチアン期を示唆する Gaudryceras cf. tombetsense のアンモナイト化石が、須鎗ほか(1967)が報告したア ンモナイト化石産出地点近傍の楠之浦より報告された. 辻野ほか(2010)は、Shibata et al. (2008)などの地質 図に基づき、これらのアンモナイト化石は、いずれも牟 岐ユニットからの産出であるとし,始新世放散虫化石の 産出層準とは異なることを指摘した.

なお本ユニットの千枚岩質泥岩からの化石の報告はな い.

釈迦ヶ生ユニット東川川に分布する3ヶ所の泥岩より,放散虫化石の報告がある(試料R3, R4, R5; Hara and Hara, 2019). 試料R3からは、Artostrobium tina, Artostrobium urna, Dictyomitra formosa, Dictyomitra koslovae など, 試料R4からは、Cryptamphorella sphaerica, Pseudoaulophacus praefloresensis など, 試料R5からは、Amphipyndax pseudoconulus, Amphipyndax tylotus, D. koslovae, Rhopalosyringium magnificum などの放散虫化石が認められる. Hara and Hara (2019)は、これらの放散虫化石年代をサントニアン期~マーストリヒチアン期前半とし、また牟岐ユニットよりやや古い放散虫化石群 集を含むことを述べた.

3.7 砂岩組成と砕屑性ジルコン年代

本地域の四万十帯付加コンプレックスでは,砂岩組成 と砕屑性ジルコン年代が,ユニット区分及び砕屑岩の堆 積年代の制約に大きな役割を果たした(Hara et al., 2017: Hara and Hara, 2019).本節では,四万十帯白亜 系付加コンプレックスの砂岩組成と砕屑性ジルコン年代 について総括する.なお本報告における砕屑性ジルコン 年代の評価については, Hara et al. (2017)及び Hara and Hara (2019)の報告を基に,最若の単一粒子年代

第3.20図 四万十帯白亜系付加コンプレックスの砂岩組成
 Qm:単結晶石英.F:長石.Lt:岩片.造構場の
 区分は Dickinson et al. (1983) による.

(YSG), 最若の粒子集団年代 (YC1 σ), 最若の粒子集 団年代 (YC) を算出した. そして本報告では, 砕屑性 ジルコンの最若年代として, 最若の粒子集団年代 (YC) を用いる. これらの詳細は, 第2章の第2.2節に記述 した (第2.5 図).

谷山ユニット・日和佐ユニット・牟岐ユニットの砂岩 は, 珪長質火山岩片に富む石質砂岩を特徴とする(公文, 1981; 君波ほか, 1998; Hara *et al.*, 2017).石質砂岩は, 一般に細粒~中粒ないし粗粒で比較的淘汰が悪い.石英・ 珪長質火山岩片を多く含み,長石や深成岩片などを含む (第3.20図).これらの珪長質火山岩を多く含む石質砂 岩は,石濱・君波(2000)による岩石相ユニットのKS IIに相当する砂岩であり,四万十帯白亜系付加コンプ レックスの中では,化学組成ではSiO₂の含有量が高く, TiO₂, Cr, Vが少ない特徴を示す(Hara *et al.*, 2017). これらに比べて,釈迦ヶ生ユニットの砂岩は,珪長質火

第3.21 図 四万十帯白亜系付加コンプレックスの砕屑性ジルコン U-Pb 年代分布 Hara *et al.* (2017) 及び Hara and Hara (2019) による.

山岩片を多く含む石質砂岩からなるが,石英の含有量が やや多い傾向を示す(第3.20図).また釈迦ヶ生ユニッ トの砂岩は,一般に淘汰が悪く,モード組成にばらつき が見られ,雲母も多く含む特徴を示す.一方,砂岩の化 学組成は,上述の牟岐ユニットなどと同様の特徴を示す. 砕屑性ジルコンの年代分布について第3.21図と第3.1 表に示す.

砕屑性ジルコンの年代分布は、谷山ユニットと日和佐 ユニットで類似性が認められる(第3.21図). 最若の 粒子集団年代(YC)は、後期白亜紀のジルコン年代か ら構成され、谷山ユニットで81.7 ± 1.0 Ma,日和佐ユ ニットで73.4 ± 2.1 Maが得られている(第3.2表). これらの年代は泥岩から産する放散虫化石年代の上限な いし若干若い年代を示す.このほか、ジュラ紀と三畳紀 に強いピークが認められる(第3.21図).また、原生 代のジルコンを40%近く含む特徴を持つ(第3.2表). 特に厚い砂岩や砂岩泥岩互層を主体とする日和佐ユニッ トには、カンパニアン期に起きた内帯(主に山陽地方) の活発な珪長質火成活動により、大量の砕屑物供給が起 きたことが指摘されている(君波ほか,1998).谷山ユニッ トと日和佐ユニットにおける堆積同時性の砕屑性ジルコ ンも,この山陽地方におけるカンパニアン期の火成活動にもたらされたと解釈されている (Hara *et al.*, 2017).

一方、牟岐ユニットと釈迦ヶ生ユニットの砕屑性ジ ルコン年代分布は、大きな相違は認められず、同様の 傾向を示す. すなわち、65 Ma 付近の弱い最若のピーク と. 80 Ma 付近の強いピークが顕著に目立つ特徴を示す (第3.21図,第3.2表).また100 Ma 付近にも弱いピー クが認められ、中生代~原生代のジルコンはほとんど 含まない. この特徴により、 牟岐ユニット及び釈迦ヶ 生ユニットの砕屑性ジルコンは、80%近くの割合を占 めるジルコンが日和佐ユニットの堆積年代とほぼ同時 期の山陽地方の火成活動に由来し、あわせて堆積同時 性の火成活動起源のジルコンが山陰地方から10数%程 度もたらされたと解釈された(Hara and Hara, 2019). また牟岐ユニット及び釈迦ヶ生ユニットにおいて、そ の砕屑性ジルコン年代の最若の粒子集団年代 (YC) は 最若ピーク年代と一致し、また泥岩から得られた放散 虫化石年代より若い年代を示し, 砕屑岩の堆積年代の 上限の決定に有意である可能性がある(Hara et al., 2017).

第3.2表	四万十帯白亜系付加コンフ	プレックスにおける砕屑性ジルコ	ンの年代分布(%)
-------	--------------	-----------------	-----------

ユニット	栩谷	日野谷	オソ谷	谷山	日和佐	日和佐		釈迦ヶ生	
試料番号	KS1-Tc	KS1-Hn	KS1-Os	KS2-Tn	KS2-Hw	KS2-Hw M1 M2		M3	
放散虫化石年代 (Ma)	113–94	107-94	94-88	90-84	78–72	78–69	n.d.	86-69	
YSG (Ma)	110.5 ± 2.5	100.7 ± 1.7	101.0 ± 3.0	81.2 ± 0.6	70.1 ± 1.7	62.7 ± 1.7	62.0 ± 1.3	65.7 ± 1.4	
YC1σ (Ma)	112.9 ± 1.9	102.0 ± 2.2	103.4 ± 2.9	81.7 ± 1.0	72.0 ± 1.7	64.1 ± 2.1	63.4 ± 1.2	66.0 ± 1.3	
YC1σの構成粒子数	5	2	3	4	5	3	7	4	
MSWD	0.65	1.7	0.8	0.6	0.6	0.94	0.48	0.27	
YC (Ma)	113.8 ± 1.6	105.8 ± 3.3	103.4 ± 2.9	81.7 ± 1.0	73.4 ± 2.1	64.1 ± 2.1	65.2 ± 1.6	67.5 ± 1.0	
YCの構成粒子数	7	8	3	4	8	3	13	6	
MSWD	0.96	4.5	0.8	0.6	1.7	0.94	2.7	0.85	
年代分布の割合(%)									
後期白亜紀後半~前期暁新世(70-62 Ma)	-	-	-	-	-	5.4	18.3	10.0	
後期白亜紀 (100-70 Ma)	-	-	-	27.1	27.3	85.7	68.3	78.3	
前期白亜紀 (145-100 Ma)	18.3	18.2	6.8	13.6	3.6	1.8	8.3	1.7	
ペルム紀~ジュラ紀 (299-145 Ma)	71.7	65.5	62.7	20.3	30.9	0	0	3.3	
カンブリア紀~石炭紀(541-299 Ma)	0	3.6	0	0	0	0	1.7	0	
原生代 (2692-541 Ma)	10	12.7	30.5	39	38.2	7.1	3.3	6.7	

本地域に分布しない栩谷ユニット・日野谷ユニット・オソ谷ユニットについても、比較のため記した、谷山ユニットの試料採取地点 は北隣の北川地域にある。データの詳細は、Hara *et al.* (2017)及び Hara and Hara (2019)による、YSG (Youngest single grain age): 最若の単一ジルコン粒子年代、YC1 σ (Youngest cluster age ± 1 σ):最若の粒子集団の年代、YC (Youngest cluster age):最若のピー ク年代、MSWD (mean square weighted deviation):重みつき標準偏差の2乗平均、詳しくは、第2.5図及び第2章の第2節に記した「砕 屑性ジルコン U-Pb 年代の評価」を参照. n.d.:データなし.

4.1 研究史及び概要

馬路地域を含む四国東部の四万十帯古第三系付加コン プレックスについて、その研究史と概要を述べる.四国 東部の四万十帯古第三系は、7万5千分の1「甲浦」図 幅(鈴木、1931)において奈半利川層と一括して表現さ れた.高知県(1961)による20万分の1高知県地質鉱 産図では、古第三系は室戸半島層群と命名され、始新統 として大山岬層・奈半利川層・室戸層に、漸新統として 世代の地層を奈半利川層・室戸層に、漸新統として 世代の地層名が用いられている.また徳島県(1972)によ る15万分の1地質図では、四万十帯古第三系は宍喰層 として命名された.1970年初頭までは、古第三系が上 述の広域地質図によって図示されたが、地層区分の根拠 や地質構造などは明らかにされていなかった.

1970年後半になり、四万十帯古第三系の層序や地質 構造が示された。川添(1974)は、北川村竹屋敷付近に おける地質図を示し、古第三系を竹屋敷層・二又層・野 根山層に区分した. そして二又層を奈半利川層(高知県, 1961)に、野根山層を室戸層に対比させた、一方、竹屋 敷層については, 礫岩を含むことを特徴に挙げた. 甲藤 ほか(1974, 1976)は、海陽町宍喰~東洋町野根~室戸 市佐喜浜にかけて分布する奈半利川層及び室戸層につい て,その地質構造及び変形構造について言及した. 公文・ 井内(1976)は、海陽町宍喰付近の地質図を示し、海部 層を新たに認定し、奈半利川層とともに、層序区分・礫 岩及び砂岩組成,古流向解析を行なった.そして,両層 は互いに良く似た特徴を示し、砂岩は多量の石英を含む こと、主に東から西への古流向を示すことなどを明らか にし, また奈半利川層にはオルソクォーツァイト礫が含 まれるとした.

1980年代には、平ほか(1980a)により、古第三系室 戸半島層群は付加コンプレックスとして認定され、大山 岬層・奈半利川層・佐喜浜メランジュ・室戸層に区分さ れた.これらのうち馬路地域及び周辺地域には、大山岬 層と奈半利川層が分布する.これらの大山岬層及び奈半 利川層は、粗粒な乱泥流堆積物や海底土石流堆積物から 構成され、しばしば斜交葉理・コンボリューション葉理 や漣痕・底痕などの堆積構造が認められる(平ほか、 1980a).

大山岬層は、砂岩・泥岩・砂岩泥岩互層からなり、変

(原 英俊・原 康祐)

成岩礫を含む礫岩を伴うことで特徴づけられる(平ほか、 1980a). 馬渕(1995)によれば変成岩礫は、緑泥石帯~ ざくろ石帯の三波川変成岩類や黒瀬川帯に属する変成岩 類を起源とすることが推定されている。一方、変成岩礫 は年代として、78.2~71.4 Maのフェンジャイト K-Ar 年代(吉倉ほか, 1991), 68.4 ± 8.2 Ma 及び 67.3 ± 9.0 Maのジルコンフィッション・トラック年代(飯塚ほか、 2014)が得られており、三波川変成岩類起源として考え られている. また花崗岩礫から, 89.2 ± 1.5 Ma のジル コン U-Pb 年代が得られ、この礫は内帯の後期白亜紀珪 長質火成岩起源と解釈されている(吉倉ほか, 1996). 大山岬層の堆積年代は、泥岩より産する放散虫化石によ り, 始新世中頃とされている (山崎ほか, 1995). 高知 県(1961)の20万分の1地質図では、大山岬層が本地 域の馬路村馬路から魚梁瀬ダム南方にも分布する. しか し本地域では、大山岬層を特徴づける礫岩は認められな いため、大山岬層は分布しないと判断した.

奈半利川層は, 主に砂岩優勢な砂岩泥岩互層からなる (平ほか, 1980a). 奈半利川層は, 室戸半島全域に広く 分布し、甲藤ほか(1974, 1976)、公文・井内(1976)、 平ほか(1980a)らにより層序学的な検討が行われた. なお、甲藤らによる一連の研究は、甲藤・平(1978)や北 川村史(甲藤, 1997)により取りまとめられている. 奈半 利川ユニットは、基本的には、整然相を示す砂岩ないし 砂岩泥岩互層からなる.また砂岩泥岩互層は,級化層理, 平行葉理,斜交葉理の積み重なりからなるブーマシーケ ンスによって特徴づけられ、タービダイトと呼ばれる乱 泥流(混濁流)堆積物であると考えられている(甲藤. 1997). さらにチャネル(流路)充填堆積物と考えられ る堆積相も認められていることから(平ほか, 1980a), 大陸斜面から海溝にかけたチャネルを伴う海底扇状地堆 積物であると考えられている(甲藤, 1997). 平ほか (1980a) によれば, 奈半利川層 (本報告の奈半利川ユニッ ト)は、北よりA·B·Cの3部層に区分される.またA・ B・C部層は、本報告の奈半利川ユニット上部・中部・ 下部に相当する.

A 部層は,砂岩優勢な砂岩泥岩互層と,やや泥岩優勢 な砂岩泥岩互層が繰り返す.また砂岩優勢な砂岩泥岩互 層には、塊状ないし厚層理砂岩を伴う.泥質部にはスラ ンプ褶曲が発達することがある.生痕化石や堆積構造が よく観察される.また国指定天然記念物である徳島県宍 喰浦の漣痕(石田,1993)も、この上部層に含まれる. B 部層は砂岩優勢な砂岩泥岩互層からなり,厚層理砂岩 を伴う.上方薄層化・細粒化のサイクルが認められる. C 部層は,やや泥岩優勢な砂岩泥岩互層を主体とし,厚 層理砂岩や砂岩優勢な砂岩泥岩互層を伴う.トラフ型斜 交葉理なども観察され,海底土石流によるチャネル充填 堆積物や周辺の海底扇状地堆積物として解釈されてい る.

奈半利川層の泥岩より,始新世中頃~後半の放散虫化 石が産出する(平ほか,1980a;須鎗・山崎,1987, 1988). Hara and Hara (2019)は,奈半利川層を奈半利 川ユニットと改称し,さらにNh1とNh2サブ(亜)ユニッ トに細分した.そしてそれぞれのサブユニットの砂岩及 び泥岩より,砕屑性ジルコンU-Pb年代と放散虫化石年 代を報告した.また砕屑性ジルコンU-Pb年代は,始新 世の放散虫化石年代より有意に古い後期白亜紀の年代を 示すことを見出し,古第三紀における西南日本島弧の活 動度の低下を示唆し,後期白亜紀~始新世にかけた後背 地変遷を検討した.一方,Nh1サブユニットの珪長質凝 灰岩からは,最若ピーク年代と一致する最若粒子集団年 代として48.7 MaのジルコンU-Pb年代が得られ,この 年代は泥岩から得られている放散虫化石年代と一致する ことを報告した.

本報告では、公文・井内(1976)、平ほか(1980a)及 びHara and Hara(2019)に基づき、馬路地域に分布す る四万十帯古第三系付加コンプレックスを、東川ユニッ ト(新称)・海部ユニット・奈半利川ユニットに区分した. Hara and Hara(2019)の Nh1 及び Nh2 サブユニットは、 本報告の東川ユニット及び奈半利川ユニットに相当す る.本地域に分布する高知県(1961)の大山岬層は、東 川ユニットに対比させた、大山岬層は、本地域の西隣及 び南西隣では、安芸構造線と馬路断層に挟まれて、大山 岬周辺のみに分布する(第2.1図).四国東部における 四万十帯付加コンプレックスの地質概略図を第2.1図 に示す.馬路地域の地質概略図を第2.2図に、地質総 括図を第2.3図に示す.また従来の報告との地質体の 対比を第2.4図に示す.

4. 2 東川ユニット (Hgs, Hgd, Hgm, Hgt)

命名・定義 Hara and Hara (2019) は,破断した砂岩 泥岩互層を主体とし,四万十帯古第三系付加コンプレッ クスの最上位を占める地質体を Nh1 サブユニットとし た.本報告では.これを東川ユニットに改称する. 四万十帯古第三系付加コンプレックスの最上位に位置 し,主に砂岩を伴う破断した砂岩泥岩互層からなる地質 体として定義される.ユニットの地理的名称は,馬路村 東 川に由来する.

分布・模式地 馬路村馬路から東川及び北川村入木に かけた東川川沿い及び中2川川沿い,さらに馬路村相名 から日浦にかけた安田川沿い及びその支流,安田町日々 入から小川にかけた小川川沿いに広く分布する. 模式地 を馬路村東川とし,東川川上流周辺のルートマップを第 3.13 図に示す.

岩相 砂岩を伴う破断した砂岩泥岩互層 (Hgd) を主体とし、砂岩 (Hgs),泥岩 (Hgm),珪長質凝灰岩及び泥岩 (Hgt)からなる、本ユニットの露頭写真を第4.1 図に、主な岩相の顕微鏡写真を第4.2 図に示す.

砂岩は、暗灰色~淡灰色を呈し、淘汰が非常に悪く、 石英及び長石に富み、また多結晶石英や雲母を含むこと で特徴づけられる(第4.2図a,b).多結晶石英として、 片状構造が発達した石英片岩が認められる.砂岩泥岩互 層の砂岩層として認められるほか、林道榊谷線から中ノ 川川にかけて、最大300mの厚い層厚を示し分布する. しかし走向方向への連続性は悪く、急激に薄層化し尖滅 する.

泥岩は、黒色なシルト質泥岩である(第4.1図 a). 鏡下では、弱い定向配列を示す粘土鉱物と、シルト大の 石英や炭質物など含むことが観察される.泥岩には、10 cm以下の砂岩や珪長質凝灰岩が挟在することがある. また長径10 cm以下の珪質な団塊(ノジュール)を含む ことがある.馬路村馬路西方の一谷林道や横谷線や安田 町日々入から小川にかけて層厚300 m以下で分布する. 走向方向への連続性が良い.

破断した砂岩泥岩互層は、等量ないし泥岩優勢な砂岩 泥岩互層が破断相を示し、一部で整然相を示す砂岩泥岩 や砂岩を伴う(第4.1図b, c). 泥岩優勢な砂岩泥岩互 層は、泥岩と砂岩の割合は約7対3~6対4である.砂 岩の層厚は、数10 cm であることが多いが、数mに達 することもある. 層厚約数 cm ~数10 cm の比較的薄い 砂岩層では、地層の膨縮が著しくブーディン構造を示す. 砂岩層の破断が進み、レンズ状の形態をなすこともある (第4.1図d). 同じく破断した砂岩泥岩互層を主体とす る釈迦ヶ生ユニットとは、砂岩層の割合がやや多いこと、 厚い泥岩層や珪長質凝灰岩層を伴うことで区別される.

珪長質凝灰岩は、一般に細粒であり、淡緑色ないし淡 灰色なガラス質凝灰岩ないしガラス質結晶凝灰岩からな る. 粗粒な凝灰岩は、基質と火山岩片に富み、融食形な いし自形の石英や長石の斑晶、変質し粘土鉱物化した火 山ガラス片を伴う(第4.2図c,d).この他に、ジルコ ンや角閃石などの重鉱物も含まれる.保存状態の良い気 泡を伴う軽石は見られない.またガラス片や火山岩片な どは、変質し緑泥石となることもある.基質のほとんど は隠微晶質なガラスからなる.なお珪長質凝灰岩中には、 泥岩の放散虫化石年代と同時期の年代を示すジルコン (YC=48.7 ± 0.4 Ma)が多く含まれ、砕屑性の異質結晶 として考えられる 80 Ma を示すジルコンもわずかに含 まれる(Hara and Hara, 2019).珪長質凝灰岩は、東川 川流域から久木ダム周辺にかけて認められる、一般に、

第4.1図 東川ユニットの岩相

(a) 泥岩.林道一谷線.(b) 整然相~破断相を示す砂岩泥岩互層.東川川.(c)破断した砂岩泥岩互層.馬路村平野.(d)
 レンズ状の形態を示す砂岩.東川川.(e) 珪長質凝灰岩.東川川.(f) 珪長質凝灰岩と泥岩による延性流動変形.東川川.
 Ss:砂岩.Md:泥岩,Tuff:珪長質凝灰岩.

層厚10 cm以下で泥岩や破断した砂岩泥岩互層に挟まれる. 層厚数 mの珪長質凝灰岩が砂岩と互層することもある(第4.1 図 e). 泥岩に挟在する珪長質凝灰岩は,しばしば破断や延性流動などの変形を受け,破断相を示す(第4.1 図 f).またまれに,平行葉理が認められることがある.なお東川ユニットの珪長質凝灰岩は,層厚数 cm ~数10 cm で,5万分の1 地質図規模で図示できない.地質図には,層厚 50 ~ 100 m 程度で側方に連続

性の良い珪長質凝灰岩及び泥岩からなる岩相を示した.

見かけの層序 東川ユニットの見かけの層序を第4.3 図に示す.本ユニットの全層厚は1,500~2,000 m であ り、東に向かい薄層化し、小川川上流部の竹屋敷林道付 近で約200 m と最も薄くなる.竹屋敷林道のさらに東で は、北北東 – 南南西走向の胴切断層である冷谷断層によ り本ユニットの分布は断たれる.本ユニットは、この断 層より東側では分布しない.砂岩を伴う破断した砂岩泥

 第4.2図 東川ユニット構成岩相の顕微鏡写真

 (a) 淘汰の悪い砂岩.東川川.クロスニコル.Qmは,石英片岩からなる.(b)粘土鉱物片に富む淘汰の悪い砂岩.一谷線. クロスニコル.(c, d) ガラス質結晶凝灰岩.東川川.c:クロスニコル,d:オープンニコル.
 Q:単結晶石英,Qm:多結晶石英.P:長石,Lv:砂岩中の火山岩片,M:粘土鉱物,Vf:凝灰岩中の火山岩片.Chl:緑泥石.

岩互層中に,層厚300m以下の砂岩及び泥岩,また層厚50~100mの珪長質凝灰岩及び泥岩が挟まれて分布する.砂岩及び泥岩はそれぞれ1層準ずつ,珪長質凝灰岩及び泥岩は3層準ほど認められる.ただし犬吠断層や久木断層に平行な断層が露頭規模で卓越するため,もとの層序を復元することは困難である.

ユニット境界 東川ユニットは、東川川沿いでは犬吠 断層と久木断層に挟まれて分布する.また安田川沿いで は馬路断層と安田断層に挟まれて分布する.犬吠断層と 馬路断層が、本ユニットと釈迦ヶ生ユニットないし牟岐 ユニットとの境界をなす.また久木断層及び安田断層が、 本ユニットと奈半利川ユニットとの境界をなす.なお馬 路断層は犬吠断層を、安田断層は久木断層を切る.

地質構造 東川ユニットの地層は,安田断層の東西で 走向傾斜が異なる傾向を示す.東川では,犬吠断層や久 木断層と平行に,北東~東北東の走向で,北ないし南に 高角度で傾斜する.またこれらの断層に平行な小断層も 多く発達する.安田断層の西側では,安田断層及び馬路 断層に平行な北北東〜北東走向で,北ないし南に中〜高 角度で傾斜を示す.

地質年代 泥岩から産する放散虫化石年代は, Nigrini et al. (2005) による分帯の RP9 ~ RP12 の範囲に生存期 間があり, イプレシアン期後半~ルテシアン期前半を示 す (Hara and Hara, 2019). 珪長質凝灰岩の U-Pb 年代は, 48.7 ± 0.4 Ma であり, 泥岩から産する放散虫化石年代 と同時期のイプレシアン期後半を示す (Hara and Hara, 2019). なお砂岩から得られた砕屑性ジルコン U-Pb 年 代は, これらのより明らかに古い後期白亜紀 (YC = 80.5 ± 1.3 Ma) を示すため, 堆積年代として適用され ない (Hara and Hara, 2019). 本ユニットの地質年代は, 泥岩から産する放散虫化石年代と珪長質凝灰岩 U-Pb 年 代を基に, 始新世中頃 (イプレシアン期後半~ルテシア ン期前半) とする.

対比 砂岩を伴う破断した砂岩泥岩互層からなり,

第4.3図 東川ユニットの柱状図(見かけの層序)

四万十帯古第三系付加コンプレックスの最上位を占める ユニットとして,高知県(1960)及び須鎗・山崎(1988) の大山岬層の一部に,また日本地質学会編(2016)の奈 半利川層の一部に,Hara and Hara(2019)の奈半利川ユ ニットのNh1サブユニットに対比される(第2.4図). 20万分の1地質図幅「高知」(原ほか,2018)では,奈 半利川ユニットの一部に対比される.

4. 3 海部ユニット (Kfs, Kfd, Kfm, Kfr)

命名・定義 本地域を含む徳島県海陽町(旧海南町, 海部町及び宍喰町)にかけて分布する四万十帯古第三系 については、大山岬層・室戸層・奈半利川層が断層で接 し分布する地質図が示された(高知県,1961).一方, 公文・井内(1973)は、海部層を新称し、古第三系は海

部層及び奈半利川層からなるとした.公文・井内(1973) は、さらに海部層を下部層(K1)及び上部層(K2)に 区分し、両者は整合一連の地層からなり、下部層と上部 層の境界は整合と考えた.公文・井内(1973)の下部層 (K1)は、主に泥岩優勢な砂岩泥岩互層及び泥岩からな り、塊状砂岩や多色泥岩を挟む、上部層(K2)は、塊 状砂岩と砂岩優勢な砂岩泥岩互層からなり,泥岩を挟む. 一方, 甲藤ほか(1974)は, 公文・井内(1973)の海部 層は奈半利川層に対比し、下部層と上部層の境界は那佐 断層による断層関係であるとした. これに対し. 公文・ 井内(1976)では、公文・井内(1973)に柱状図や砂岩、 礫岩の礫組成及び古流向のデータを補完し、自身の見解 を支持した.本報告では、後述する整然相を特徴とする 奈半利川ユニットとは異なり。

大谷林道や竹屋敷林道で は、砂岩に伴い多色泥岩が分布すること、北川村竹屋敷 や海陽町船津周辺では、破断した砂岩泥岩互層が特徴的 に分布することなど、公文・井内(1976)による岩相区 分とほぼ一致する見解を得た、そこで公文・井内(1973、 1976)の海部層を踏襲し、構造層序単元としてユニット を用い、新たに海部ユニットに改称する.一方、下部層 (K1)と上部層(K2)の境界については、断層の存在が 確認(甲藤ほか,1974)されていること,また下部層(K1)

と上部層(K2)の地層は北傾斜を示すが境界は南傾斜 を示すことから,整合関係ではなく那佐断層による断層 関係であるとした.従って海部ユニットは,下部の泥岩 及び多色泥岩を伴う砂岩及び砂岩泥岩互層と,上部の泥 岩を伴う破断した砂岩泥岩互層からなるユニットとして 定義される.そして前者は公文・井内(1976)の上部層 (K2)に,後者は下部層(K1)に対比され,その境界は 那佐断層である.

分布・模式地 本地域中央部に位置する竹屋敷林道か ら大谷林道にかけて、そしてその東側の海陽町久尾〜船 津周辺の野根川流域及び小谷周辺の宍喰川流域に分布す る.本地域における海部ユニットの模式地を北川村竹屋 敷とし、その周辺のルートマップを第4.4図に示す.

岩相 本ユニットは、那佐断層を挟んで下部と上部に 区分される。下部では、砂岩を伴う破断した砂岩泥岩互 層(Kfd)を主体とし、泥岩(Kfm)を伴う。上部では、 礫岩を伴う砂岩及び砂岩泥岩互層(Kfs)を主体とし、 泥岩(Kfm)及び多色泥岩(Kfr)を伴う。

礫岩は、北川村竹屋敷北方で、厚層理砂岩と漸移する. 一般に、礫は小礫大の亜円~円礫からなる.泥岩礫や泥 質片岩礫は、亜角礫である.礫種は、砂岩・泥岩・チャー ト・結晶片岩であり、大山岬層の礫組成と類似すること

第4.4図 海部ユニットと牟岐ユニットのルートマップ 北川村竹屋敷周辺.岩相の凡例記号は地質図を参照.

が指摘されている(川添, 1974). この他にも,石英斑 岩と呼ばれた石英に富む斑状細粒花崗岩や流紋岩の礫を 多く含む.またこれまでのところ,本ユニットの礫岩か らオルソクォーツァイト礫は確認されていない(公文・ 井内, 1976). 基質は粗粒~極粗粒砂岩からなり,基質 支持である.礫岩の層厚は数10 cm~1 m 程度である.

砂岩は、灰白色~淡灰色を呈する塊状ないし成層砂岩 (第4.5図a, b)からなる. 中粒~礫質な粗粒砂岩を特 徴とする(第4.6図 a-c).一般に砂岩は、比較的淘汰 が良く、石英に富む特徴を示す、また長石及び多結晶石 英, 堆積岩片及び火山岩片や変成岩片, 雲母を含む. 岩 片としては、流紋岩などの珪長質火山岩、石英に富む斑 状細粒花崗岩,石英片岩や泥質片岩などの変成岩片,泥 岩及びシルト岩が多く認められる(第4.6図 a-c). 塊 状砂岩は、層厚数m以上で泥岩の挟みが認められない 砂岩である. 成層砂岩は、単層の厚さが数10 cm ~数 m 程度までを示し、数 cm 以下の泥岩が挟在する、単層の 厚さが数10 cm 以下の薄~中層理の場合,薄層理砂岩と 砂岩泥岩互層が、また単層の厚さが数mを示す厚層理 の場合、厚層理砂岩と塊状砂岩が漸移関係になることが 多い. また厚層理砂岩には、礫岩や礫質砂岩を伴うこと がある.

砂岩泥岩互層は、砂岩に伴って露出し、砂岩優勢ない し等量の砂岩泥岩互層からなる(第4.5図c).砂岩優 勢な砂岩泥岩互層は、層厚数10 cm~1 mの中層理な砂 岩に対し、数 cm~数10 cmの薄層理の泥岩を挟む.砂 岩と泥岩の量比は、9対1~7対3程度である.砂岩泥 岩等量互層は、数 cm~数10 cmの層厚を示す.

破断した砂岩泥岩互層は、泥岩優勢な砂岩泥岩互層が 破断し、しばしば砂岩が膨縮しブーディン構造を示す(第 4.5図d, e).砂岩の層厚は、数10 cm以下である.ま たしばしば層厚数10 mの砂岩を伴う.破断した砂岩泥 岩互層に含まれる砂岩は、一般に細粒~中粒であり、淘 汰が悪いことがある(第4.6図d).公文・井内(1976) は、砂岩のブーディン構造を指摘するとともに、宍喰断 層によって幅広いじょう乱帯が存在するとした.公文・ 井内(1976)が指摘したじょう乱帯は、本報告における 破断した砂岩泥岩互層に一致する.なお宍喰断層は、海 陽町船津付近に分布する破断した砂岩泥岩互層中を通る とされるが、本地域では未確認である.

泥岩は、暗灰色〜黒色なシルト質泥岩である. 鏡下で 弱い定向配列を示す粘土鉱物と、シルト大の石英や炭質 物などを含むことが観察される(第4.6図e). 泥岩には、 長径数 mm 〜数 cm 大の砂岩のレンズ状岩塊や珪質な団 塊(ノジュール)を含むことがある(第4.6図f). 泥 岩は、礫岩を伴う砂岩及び砂岩泥岩互層に挟まれ、層厚 50 m ないし 200 m で分布する(第4.5図f). 破断した 砂岩泥岩互層には、最大層厚 300 m で2 層準認められる (第4.5 図 g). 泥岩は、走向方向への連続性が良く鍵層 となる.

多色泥岩は、細粒な赤色ないし灰色の珪質泥岩である. 微晶質な石英と粘土鉱物から構成され、わずかにシルト 大の砕屑粒子を伴う.本ユニットの多色泥岩は、層厚 50 m 以下で、走向方向への連続性が良く鍵層となる. 北川村竹屋敷北方や大谷林道では、砂岩及び砂岩泥岩互 層中に、黒色泥岩に伴い、赤色ないし灰色を呈する多色 泥岩が分布する(第4.5 図 h).緑色泥岩も報告されて いるが(公文・井内,1976)、本地域では未確認である.

見かけの層序 海部ユニットの見かけの層序を第4.7 図に示す.本ユニットは、那佐断層を境にして、その下 部と上部で岩相組み合わせによる見かけの層序が大きく 異なる.下部は、主に破断した砂岩泥岩互層からなり、 泥岩を伴う.北北東 – 南南西走向の胴切断層である冷谷 断層の東側では、層厚1,000~2,000mの破断した砂岩 泥岩互層に対し,層厚200~300mの泥岩が挟在する. 泥岩は2層準ほど認められる。冷谷断層の西側では、大 谷林道沿いに分布し, 層厚 500 m 以下で西に向かい尖滅 する.また破断した砂岩泥岩互層中に,層厚80mほど の砂岩を伴う、上部は、主に礫岩を伴う砂岩及び砂岩泥 岩互層、泥岩及び多色泥岩からなる、層厚1,500~1,700 mの礫岩を伴う砂岩及び砂岩泥岩互層に対し, 層厚 50 m ないし 200 m の泥岩及び層厚 50 m 以下の多色泥岩が 挟在する、冷谷断層の西側の北川村竹屋敷北方及び大谷 林道沿いでは、西に向かい礫岩を伴う砂岩及び砂岩泥岩 互層の分布が狭まり、久木断層及び東川ユニットとの境 界断層に収れんする様にくさび状の分布を示す.

ユニット境界 冷谷断層の東側では,海部ユニットの 上限は安芸構造線によって牟岐ユニットと接する(第 2.3図).下限は,塩深断層によって奈半利川ユニット と接する.冷谷断層の西側では,上限は断層により東川 ユニットに,下限は久木断層によって奈半利川ユニット に接する.

地質構造 海部ユニットの地層は,東北東ないし西北 西〜東西走向を示し,基本的に北上位で北に高角度で傾 斜する.

地質年代 大谷林道のシルト質泥岩から産出した放散 虫化石 (Hara and Hara, 2019), また海陽町北河内の泥 岩から産出した放散虫化石 (須鎗・山崎, 1988) は, Nigrini et al. (2005)の RP9 ~ RP12 帯に生存期間を持ち, 始新世中頃 (イプレシアン期後半~ルテシアン期前半) を示す. この年代は,東川ユニットの化石年代と一致す る. また複数の地点の泥岩からは, RP8 ~ RP19帯に生 存期間を持つ放散虫化石 (Calocyclas hispida)が産出し (須鎗・山崎, 1988), この年代は始新世 (イプレシアン 期後半~プリアボニアン期)の範囲にある.本報告では, 海部ユニットの堆積年代を,放散虫化石年代が重複する イプレシアン期後半~プリアボニアン期の範囲とする. しかし化石の産出報告が少ないことから,この年代はよ

 第4.5図 海部ユニットの岩相
 (a) 塊状砂岩. 竹屋敷林道. (b) 厚層理砂岩. 海陽町久尾. (c) 砂岩優勢な砂岩泥岩互層. 大谷林道. (d) 破断した砂岩 泥岩互層. 東隣の宍喰中学校の裏. (e) 破断した砂岩泥岩互層. 海陽町塩深. (f) 黒色泥岩. 大谷林道. (g) 泥岩. 海陽 町船津南. (h) 赤色泥岩. 竹屋敷林道. Ss:砂岩.

第4.6図 海部ユニット構成岩相の顕微鏡写真

(a) 中粒〜粗粒砂岩、海陽町久尾. クロスニコル. (b) 粗粒〜極粗粒砂岩. 竹屋敷林道. クロスニコル. (c) 粗粒〜極 粗粒砂岩. 竹屋敷林道. クロスニコル. (d) 細粒砂岩. 北川村竹屋敷. クロスニコル. (e) 暗灰色泥岩. 竹屋敷林道. オー プンニコル. (f) 珪質ノジュール. 竹屋敷林道. オープンニコル.

Q:単結晶石英,Qm:多結晶石英(石英片岩及び斑状細粒花崗岩からなる),Qs:石英片岩 P:長石,Lv:火山岩片,M:粘土鉱物.

第4.7図 海部ユニットの柱状図(見かけの層序)

り限定される可能性がある.

対比 主に礫岩を伴う砂岩及び砂岩泥岩互層, さらに 破断した砂岩泥岩互層からなる古第三系付加コンプレッ クスとして, 公文・井内 (1976)の海部層に対比される (第2.4図). さらに, 那佐断層より構造的上位の礫岩 を伴う砂岩及び砂岩泥岩互層, 泥岩及び多色泥岩は, 公 文・井内 (1976)の海部層上部層及び石田・橋本 (1998) の海部砂岩層に, 下位の破断した砂岩泥岩互層及び泥岩 は海部層下部層に対比される. この他, 徳島県 (1972) の宍喰層, 高知県 (1961)の北川村竹屋敷~尾河周辺に 断層で繰り返して分布する大山岬層・奈半利川層・室戸 層に, 甲藤ほか(1974)の海陽町久尾や周辺に分布する 主に砂岩及び砂岩泥岩互層からなる奈半利川層の上部層 に相当する.

4. 4 奈半利川ユニット (Nhs, Nhi, Nhd)

命名・定義 江原(1928)によって奈半利川層と命名 された.奈半利川層は、四万十帯古第三系として、7万 5千分の1地質図幅「室戸」(鈴木、1930)及び「甲浦」(鈴 木、1931)、20万分の1高知県地質鉱産図(高知県、 1961)、20万分の1地質図幅「剣山」(神戸、1968)、甲 藤ほか(1974,1976),公文・井内(1976),平ほか(1980a), 20万分の1四国地方土木地質図(四国地方土木地質図 編纂委員会,1998)など多くの文献及び地質図で広く用 いられている.本報告では,原ほか(2018)に従い構造 層序単元としてユニットを用い,奈半利川層を奈半利川 ユニットに改称する.奈半利川ユニットは,主に砂岩・ 砂岩泥岩互層からなり,その大部分で整然相を示す地層 として定義される.本地域南部,菅ノ上断層より南では, 破断相を示す砂岩泥岩互層も認められる.

分布・模式地 高知県側では安田川, 奈半利川, 小川 川流域に, また徳島県側では野根川下流に広く分布する. 模式地を北川村轟周辺の奈半利川沿いに認定し, 模式地 及び大谷林道周辺のルートマップを第4.8回に示す.

岩相 砂岩及び砂岩泥岩互層 (Nhs),砂岩泥岩互層 及び砂岩 (Nhi),泥岩を伴う破断した砂岩泥岩互層 (Nhd) からなる.

砂岩は、灰白色~淡灰色を呈し、塊状ないし成層砂岩 (第4.9図a,b)である.しばしば砂岩泥岩互層に漸移 する.中粒~細礫を含む極粗粒な砂岩を特徴とする(第 4.10図a,b).一般に砂岩は、石英に富み、長石・火 山岩片・変成岩片などを含む.火山岩片は、流紋岩など 珪長質な火山岩が多い.変成岩片として、片状構造が発 達した石英片岩や泥質片岩を含む.また多結晶石英や雲 母、泥岩ないしシルト岩の岩片を頻繁に含み、石英に富 む斑状細粒花崗岩の岩片を多く含む(第4.10図c,d). 塊状砂岩は、層厚数m以上で泥岩の挟みが認められな い砂岩である,成層砂岩は,単層の厚さが数10 cm ~数 m程度までを示し,数 cm以下の泥岩を挟在する.単層 の厚さが数10 cm以下の薄~中層理の場合,成層砂岩と 砂岩泥岩互層が,また単層の厚さが数 m を示す厚層理 の場合,成層砂岩と塊状砂岩が漸移関係になることが多 い.また厚層理砂岩には,礫岩や礫質砂岩を伴うことが ある.

礫岩は、北川村尾河や笹谷林道などで、厚層理砂岩と 漸移関係によって露出する.礫種として、砂岩・泥岩・ チャート・結晶片岩・流紋岩・石英に富む斑状細粒花崗 岩が多く含まれる(第4.9図c,d).公文・井内(1976) によればオルソクォーツァイト礫も確認されている.一 般に、礫は小礫大の亜円~円礫からなる.また泥岩礫や 泥質片岩礫は、亜角礫からなる.一般に基質は粗粒~極 粗粒砂岩からなり、基質支持である.礫岩の層厚は数 10 cm 程度である.

泥岩は、暗灰色〜黒色を呈し、微細な粘土鉱物に富み、 シルト大の石英・長石・炭質物などの不透明鉱物などを 含む.しばしばシルト質で、葉理の発達が認められるこ ともある.層厚数 cm 〜数 10 cm で砂岩と互層する.ま た後述する破断した砂岩泥岩互層は、層厚数 m 以下の 泥岩を伴うことがある.

砂岩泥岩互層は,主に砂岩優勢な砂岩泥岩互層及び砂 岩泥岩等量互層からなり,まれに泥岩優勢な砂岩泥岩互 層からなる.砂岩優勢な砂岩泥岩互層は,層厚が数 cm ~数 10 cm の薄層理ないし中層理であり(第4.9 図 e),

第4.8図 奈半利川ユニットのルートマップ 北川村轟周辺. 岩相の凡例記号は地質図を参照.

第4.9図 奈半利川ユニットの砂岩及び砂岩泥岩互層 (a) 塊状砂岩及び厚層理砂岩.島石ピクニック広場.(b) 中層理砂岩. 宗ノ上川.(c, d) 礫岩. 笹谷林道.Q:石英に富 む斑状細粒花崗岩.Ps:泥質片岩.Md:泥岩.(e) 砂岩優勢な砂岩泥岩互層.影地林道.(f) 泥岩優勢な砂岩泥岩互層. 東洋町日曽谷.(g) 砂岩泥岩等量互層及び泥岩優勢な砂岩泥岩互層.栃谷林道.(h) フルートマーク.東洋町日曽谷(i) 漣痕が発達する砂岩の底面.小川川.

第4.10 図 奈半利川ユニット構成岩相の顕微鏡写真 (a)砂岩.馬路村五味.クロスニコル.(b)砂岩.北川村久木の南.クロスニコル.(c)礫質砂岩.笹谷林道.クロスニ コル.(d)礫質砂岩.笹谷林道.クロスニコル. Q:単結晶石英,Qm:多結晶石英.P:長石,Lv:火山岩片,M:粘土鉱物.Qs:石英片岩.Ps:泥質片岩.Md:泥岩.

砂岩と泥岩の割合は9対1~7対3程度である.砂岩優 勢な砂岩泥岩互層には、層厚数mの厚層理砂岩ないし 塊状砂岩を伴うこともしばしばある.砂岩泥岩等量互層 は、単層の厚さが数10 cm 程度の中層理であることが多 い.泥岩と砂岩の割合が、8対2~7対3程度の泥岩優 勢な砂岩泥岩互層も認められる(第4.9図f).これら の砂岩泥岩互層は、漸移関係を示すことが多い(第4.9 図g).砂岩泥岩互層の砂岩の底面には、漣痕やフルー トマークなどの流痕が認められる(第4.9図h, i).

破断した砂岩泥岩互層は、砂岩泥岩等量互層及び泥岩 優勢な砂岩泥岩互層中の層厚数10 cm 以下の薄~中層理 砂岩が破断を受けた岩相である.砂岩泥岩互層に伴って 露出する場合、破断の程度は弱く、砂岩はわずかにブー ディン構造を示す(第4.11 図 a, b).また破断が進行し、 砂岩が分断され岩塊として露出することもある.砂岩岩 塊は、もとの砂岩層の連続性が確認できる場合(第4.11 図 c, d) や、完全に破断されレンズ状になっている場 合(第4.11図 e)など,その変形の程度は様々である. また破断した砂岩泥岩互層では,層厚数 m ~数10 m で 泥岩を伴うことがある(第4.11図 f).北川村轟,堂ヶ 平,平鍋,安倉などで認められ,層厚は200~1,000 m で側方に連続して分布する.特に菅ノ上断層の下盤に広 く分布する.

見かけの層序 奈半利川ユニットの見かけの層序を第 4.12 図に示す.さらに本報告では、本ユニットの層序 を下部・中部・上部に細分した。下部と中部の境界に菅 ノ上断層、中部と上部の境界に生見断層が位置する.ま た平ほか(1980a)による奈半利川層のA・B・C部層は、 本報告の奈半利川ユニット上部・中部・下部に相当する.

下部は、菅ノ上断層より構造的下位の泥岩を伴う破断 した砂岩泥岩互層と砂岩及び砂岩泥岩互層からなる。砂 岩及び砂岩泥岩互層中に、層厚 500 m 以下の破断した砂 岩泥岩互層が挟まれることを特徴とする。

中部は,主に砂岩及び砂岩泥岩互層からなる.層厚は,

第4.11 図 奈半利川ユニットの破断した砂岩泥岩互層及び泥岩

 (a) 破断した砂岩泥岩互層と中~厚層理砂岩. 平鍋橋. (b) 破断した砂岩泥岩互層及び砂岩泥岩互層, 安田町小川. (c) 破断した砂岩泥岩互層, 後口山林道. (d) 破断した砂岩泥岩互層, 後口山林道. (e) レンズ状砂岩岩塊を含む破断した砂岩泥岩互層, 白線で囲んだ部分が砂岩. 影地林道. (f) 泥岩. 影地林道.

1,200 ~ 2,400 m 程度である.

上部は、生見断層より構造的上位の砂岩及び砂岩泥岩 互層と砂岩泥岩互層及び砂岩からなる.北北東 – 南南西 走向の胴切断層である冷谷断層の西側では、砂岩及び砂 岩泥岩互層と砂岩泥岩互層及び砂岩は、それぞれ2層準 認められる.砂岩及び砂岩泥岩互層は、層厚最大約1,500 mである.北縁部では向斜が認められ、褶曲軸を挟んで その北翼部では層厚1,200 m以下、南翼部では層厚1,500 m以下の砂岩及び砂岩泥岩互層が分布する.北翼部では、 層厚約100m以下の破断した砂岩泥岩互層を伴う.砂岩 泥岩互層及び砂岩は,層厚約800mないし約1,500mで ある.冷谷断層の東側では,北川村尾河から東洋町日曽 谷にかけて,層厚2,500mの砂岩及び砂岩泥岩互層に, 層厚300m以下の砂岩泥岩互層及び砂岩がたびたび挟ま れる.

ユニット境界 奈半利川ユニットの北限は, 久木断層 によって東川ユニット及び海部ユニットに, また塩深断 層によって海部ユニットに接する. また北西限は, 安田

第4.12図 奈半利川ユニットの柱状図(見かけの層序)
 R9~R13は放散虫化石産出層準, N2はジルコン年代試料採取層準を示す(Hara and Hara, 2019).

断層によって東川ユニットに接する.

地質構造 奈半利川ユニットは,大局的に本地域の東 部では西北西から東西走向が卓越するのに対し,西部で は北東走向が卓越する.これは,室戸岬の東部に発達す る室戸屈曲(Hibbard *et al.*, 1992)の影響による.生見 断層やこれに並走する菅ノ上断層によって,奈半利川ユ ニットは細分される.

奈半利川ユニットは、一般に北上位・北傾斜の同斜構 造を示すが、本ユニットの最上位の北川村轟の南や朝日 出谷周辺では、東北東 – 西南西走向の軸を持つ向斜が確 認される。向斜は、半波長数 100 m の翼間隔の閉じた褶 曲であり、地層の傾斜から褶曲軸面はほぼ垂直と推定さ れる.北翼は久木断層に断たれるため、対になる背斜が 存在したかどうかは不明である。その他、北川村二又や 平鍋では背斜の、北川村尾河では向斜の存在が指摘され ている(高知県、1961).これらの褶曲は、生見断層や 菅ノ上断層付近に存在が想定されているため、実態は不 明である。断層運動に伴う、露頭規模の小さな褶曲が反 映されている可能性がある.

地質年代 本ユニットの泥岩から産出する放散虫化石 は、Nigrini et al. (2005) による化石分帯の RP17 ~ RP19 (プ リアボニアン期) に生存期間を持つ種を含む (Hara and Hara, 2019). 一方, 砕屑性ジルコン年代の最若のピー ク年代は、放散虫化石年代より明らかに古い暁新世 (YC = 60.6 ± 4.0 Ma) を示す. したがって,本ユニットの地 質年代は、放散虫化石年代を採用し、始新世後半のプリ アボニアン期とする.

対比 主に整然相を示す砂岩及び砂岩泥岩互層からな る四万十帯古第三系付加コンプレックスとして,甲藤ほ か(1974,1976)の奈半利川層の一部,公文・井内(1976) 及び平ほか(1980a)の奈半利川層に相当する(第2.4図). 20万分の1地質図幅「高知」(原ほか,2018)の奈半利 川ユニットに対比される.

4.5 産出化石

本地域及び周辺地域の四万十帯古第三系付加コンプ レックスの泥岩から,放散虫化石や二枚貝化石の産出報 告がある.古第三紀放散虫化石の年代決定について,古 くは Sanfilippo et al. (1985)による化石分帯が用いられ てきた.しかし最近,Sanfillipo and Nigrini (1998)及び Nigrini et al. (2005)は、化石分帯の見直し及びその構 成種を詳細に報告し、新たに RP1 ~ RP22の化石帯 (RP 分帯)を認定した.そして Nigrini et al. (2005)による 化石分帯は、四万十帯古第三系付加コンプレックスに適 用されている(例えば、鈴木・福田、2012).本報告では、 本地域及び周辺地域からすでに産出報告のある始新世放 散虫化石について、Nigrini et al. (2005)の RP 分帯に従 い、放散虫化石年代の見直しを行った、本地域から産出 する主な始新世放散虫化石とその地質年代について, 第 4.13 図に取りまとめた. なお Nigrini *et al.* (2005) では, RP9 ~ RP11 については詳細に分帯されていない. そこ で, RP9 ~ RP11 については, Nigrini and Sanfilippo (2001) を参考にした. 第4.1 表には, 年代決定に有効な放散 虫化石産出と各文献における試料番号, 及び化石分帯を 示した.本地域での化石産出地点を付図に, 代表的な放 散虫化石を第4.14 図に示す.

東川ユニット Hara and Hara (2019) により、2 地点 の泥岩より放散虫化石の報告がある. 東川川に露出する 泥岩(試料 R6)の年代は, Lychnocanoma babylonis など の産出により, RP8~ RP11の範囲(イプレシアン期~ ルテシアン期前半)にある.また林道横谷線に露出する 泥岩年代(試料 R7)は, Thyrsocyrtis (Pentalacorys) tensa やT. (P.) triacantha などの産出により RP12 (ルテシア ン期前半)に対比された.また須鎗・山崎(1988)が報 告した放散虫化石のうち、日浦の地点(試料13)は、 東川ユニットに含まれる.この試料の放散虫化石年代は, Periphaena delta の産出により, RP9 ~ RP12 (イプレシ アン期後半~ルテシアン期前半)に対比できる.また山 崎ほか(1993)が放散虫化石を報告した大山岬東の下山 付近の泥岩も東川ユニットに相当し、その年代は Phormocyrtis striata striata により RP9 ~ RP11 (イプレ シアン期後半~ルテシアン期前半)に対比される.

海部ユニット Hara and Hara (2019) によって、大谷 林道に分布する砂岩に伴うシルト質泥岩(試料 R8)よ り Theocotyle cryptocephala を含む放散虫化石群集が報告 された. この化石群集は, RP9~ RP12 に対比され, イ プレシアン期後半~ルテシアン期前半を示す. 須鎗・山 崎(1988)が報告した放散虫化石を産する泥岩のうち, 本地域では久尾の泥岩(試料7及び試料8).また東隣 甲浦地域では海陽町北河内の泥岩(試料4), 櫛川西の 泥岩(試料5),百比学の泥岩(試料9), 宍喰北の泥岩(試 料10)及び塩深の泥岩(試料11)が本ユニットに帰属 する.北河内の泥岩(試料4)から産する放散虫化石群 集は, Periphaena delta の産出により, RP9~ RP12 に対 比できる. なおその他の泥岩試料からは, RP8~ RP19 に生存期間のある Calocyclas hispida や, RP10~ RP20 の Dictyoprora mongolfieri が産出する. これらの放散虫 化石については, 生存期間が長く少なくとも始新世を示 す.

また須鎗・山崎(1987)は東隣甲浦地域の海陽町野江 の母川において,転石のノジュールより始新世を示唆す る Crassatella (Eucrassatella) cf. nipponensis の二枚貝化 石を報告した.須鎗・山崎(1987)では,本ユニット相 当層から有孔虫化石も見出されているが,年代決定に有 効な種は含まれていない.

奈半利川ユニット Hara and Hara (2019) は, 奈半 利川流域及び小川川流域の5地点の泥岩(試料 R9~

82 55 56 48 47 48 46 44 45 48 48 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98

第4.13 図 始新世放散虫化石とその分帯

Nigrini et al. (2005) を基に主要な始新世放散虫化石を選択し、それらによる化石分帯と地質年代を示した.地質年代は、 国際層序委員会(Gradstein et al., 2012)の区分を採用し、年代値については 2018 年の改訂版を用いた.

R13) より放散虫化石を報告した.いずれの試料からも Calocyclas turris, Lychnocanoma babylonis, Theocampe mongolfieri, Theocampe ovata などの放散虫化石が産出す る. このうち Calocyclas turris は、Nigrini et al. (2005)の 分帯では RP16~ RP19 の生存期間の範囲にあり, 始新世 後半 (バートニアン期後半~プリアボニアン期)を示す. また試料 R9, R11 及び R12 は, RP17 ~ RP19 (プリア ボニアン期)に生存期間を持つ Cryptocarpium azyx を含 み,始新世後半(プリボニアン期)を示す.須鎗・山崎 (1988) によって朝日出の泥岩(試料14)及び四郎ヶ野 峠の泥岩(試料15)から報告された放散虫化石は本ユ ニットから産出されたものである. 両試料からは, Calocyclas hispida や Dictyoprora mongolfieri が産出する. これらの放散虫化石は、それぞれ RP8~ RP19 及び RP10 ~ RP20の始新世中頃~後半にいたる長い生存期間を示 す. また四郎ヶ野峠の泥岩 (試料 15) には, Dictyoprora armadillo も含まれる. これは RP16 ~ RP19 に対比され, 始新世後半 (バートニアン期後半~プリアボニアン期) を示す. また平ほか(1980a)は、本地域の小川川流域 の尾河,及び南隣の奈半利地域の淀ケ磯から Dictyoprora mongolfieri を含む放散虫化石群集を報告し、その年代を 始新世中頃~後半とした.

東隣の甲浦地域において,阿佐海岸鉄道甲浦駅北方の 宍喰第四トンネル建設中のズリ山より石灰質ナンノ化石 の報告がある(甲藤ほか,1979;岡田・岡村,1980). 甲藤ほか(1979)によれば,石灰質ナンノ化石は白亜紀 中頃(アプチアン期〜チューロニアン期)と始新世前半 (50~49 Ma)の混合群集とみなされ,白亜紀の群集は 再堆積した群集として解釈された(甲藤ほか,1979).

同じく, 宍喰第四トンネルの黒色泥岩より, 波多江 (1960) による Crassatellites nov. sp. a とされる二枚貝化 石が産出する (須鎗・山崎, 1987). 南隣の奈半利地域 では, 北川村崎山の黒色泥岩からAcila (Truncacila) decisa, Portlandia (Portlandia) nahariensis, Parvamussium inouei の二枚貝化石の産出報告があり (Katto and Tahshiro, 1979), この二枚貝が示す年代は始新世中頃とされる (田 代, 1980). また北川村加茂の黒色泥岩から始新世を示 す Crassatella (Eucrassatella) nipponensis が報告されて いる (Katto and Tashiro, 1979; 田代, 1980).

東隣甲浦地域では海陽町古首永床)より,漸新世を示 すVenericardia subnipponica の二枚貝化石の報告がある (徳島県, 1972). また同じく海陽町古目では, Venericardia cf. subnipponica, Portlandia cf. watasei, Ctenamussium sp. の二枚貝化石の報告がある(公文・井内,

第4.14 図 四万十帯古第三系付加コンプレックスから産出する古第三紀放散虫化石

1: Bathropyramis magnifica (R6). 2, 3: Calocyclas turris (R9 and R11). 4: Calocycloma castum (R6). 5: Clathrocyclas universa (R6). 6, 7: Cryptocarpium azyx (R12 and R9). 8: Dorcadospyris confluens (R6). 9, 10: Dorcadospyris pentas (R6). 11: Lithochytris vespertilio (R7). 12: Lithomitra micropore (R13). 13: Lychnocanoma babylonis (R7). 14: Lychnocanoma bellum (R7). 15, 16: Phormocyrtis striata striata (R6). 17: Podocyrtis (Lampterium) mirabilis (R7). 18: Podocyrtis (podocyrtis) papalis (R13). 19, 20: Rhopalocanium pyramis (R6). 21: Tessarospyris (?) bicaudalis (R7). 22, 23: Theocampe mongolfieri (R13). 24: Theocampe ovata (R9). 25, 26: Theocorys spongoconum (R13). 27: Theocotyle cf. venezuelensis (R6). 28: Thyrsocyrtis (pentalacorys) tensa (R7). 29: Thyrsocyrtis (Pentalacorys) triacantha (R7). 30: Thyrsocyrtis (Thyrsocyrtis) rhizodon (R9). 31: Periphaena heliasteriscus (R7). 32: Amphisphaera coronata (R6). 33: Stylosphaera minor (R13). $\land \checkmark \nu \land - i \downarrow 100 \mu$ m. Hara and Hara (2019) $\downarrow \psi$ 転載した. R6 ~ R13 は, 試料番号を示す.

445-4-	Hars and Hars (2010)					須給・山崎 (1988)									山山広*					
	II.	1	Tara	and r	The NIL NIL NIL E				E1	VE	VE	2月 17月	sel ·	Щ µnj	(130	50) V.C	п.	NIL.	N11.	山町
イーツト	Hg	Hg D7	KI D0	Nn	IND 10	Nn D11	Nn D12	Nn D12	ED 2	KI 4	KI 6	7	KI 0	KI 0	KI 10	KI 11	Hg	INN 14	Nn 15	Hg
谷 X M C の 武 科 备 万 (V 工 八 世 DD () Line Line 1 2005)	K0	K/	12	K9	K10	17.10	R12	KI3	3 0.10	4	2	/	8	9	10	11	13	14	15	10*
化有分带RP (Nigrini et al. 2005)	8-11	9-	-12			1/-19	9		8-19	9-12		1	ð-	-19			9-12	8-19	10-19	9-12
放取虫10石	-	<u> </u>	1		1	-		1					1	_	-	1				
Ampnisphaera coronata	•						<u> </u>		_					-						
Bathropyramis magnifica	•	•	•				<u> </u>		•				-	-						
Buryella tetradica																				
	•							_	_	_	_	_	_							•
Calocycloma hispida	_							_	•	_	•	•	•	•	•	•	•	•	•	•
Calocyclas turris	_			•	•	•	•	•		•			_							
Calocycloma ampulla										•	•		•							•
Clathrocyclas universa	•																			
Cryptocarpium azyx				•		•	•													
Dictyoprora armadillo																			٠	
Dictyoprora mongolfieri										٠	٠			٠	٠	•	•	•	٠	
Dorcadospyris confluens	٠																			
Dorcadospyris pentas	٠																			
Eusyringium fistuligerum										٠						٠				
Eusyringium lagena																٠				
Lithochytris vespertilio		٠																		
Lithomitra micropore		٠		٠				٠												
Lychnocanoma babylonis	٠	٠		٠	٠	٠	٠	٠												
Lychnocanoma bellum		٠																		
Periphaena delta										٠							٠			
Periphaena heliasteriscus		٠	٠	٠																
Phormocyrtis striata striata	٠									٠										٠
Phormocyrtis turgida																				٠
Podocyrtis (Lampterium) mirabilis		٠																		
Podocyrtis (Lampterium) mitra										٠										
Podocyrtis (Podocyrtis) papalis								٠												
Rhopalocanium ornatum										٠										
Rhopalocanium pyramis	٠	1					1										1			
Sethochytris triconiscus										٠					٠					
Stylosphaera minor		•	٠				1	٠									1			
Theocampe mongolfieri		٠		٠	٠	٠	٠	٠									1			
Theocampe ovata		1		٠	٠	٠	•	٠												
Theocorys spongoconum		1		٠			•	٠												
Theocotyle cryptocephala		Ì	٠	Ì	İ		Ì									Ì				
Theocotyle cf. venezuelensis	٠		Ì	Ì	1											Ì				
Thyrsocyrtis (Pentalacorys) tensa		٠	Ì	Ì	İ		Ì									Ì				
Thyrsocyrtis (Pentalacorys) triacantha		•	Ì	Ì	1					٠					٠	Ì				
Thyrsocyrtis (Thyrsocyrtis) hirsuta			Ì	Ì	1					٠						٠				
Thyrsocyrtis (Thyrsocyrtis) rhizodon		İ	İ	٠	İ		Ì			٠		٠				٠				

第4.1表 馬路地域から産出する古第三紀放散虫化石

Hg:東川ユニット. Kf:海部ユニット. Nh:奈半利川ユニット. Eb:海老ヶ池ユニット. 須鎗・山崎 (1988) の試料番号 3 ~ 11 は東隣の甲浦地域から,山崎ほか (1992)の試料番号 16 は南西隣の安芸地域からの報告である.

1976). これらの二枚貝化石の産出により,公文・井内 (1976) は奈半利川層の年代を漸新世とした.一方,徳 島県(1972) は漸新世二枚貝化石の産出が少ないこと, 須鎗・山崎(1987) は漸新世二枚貝化石産出と同一層準 より始新世二枚貝化石が産出することから,奈半利川ユ ニットの年代を漸新世と断定するにはさらなる検討が必 要としている.奈半利川ユニットにおいて,漸新世の二 枚貝化石産出層準が海陽町古目の限られた地域のみであ ること,この二枚貝化石以外の化石は始新世を示すこと から,古目の化石産出層準は奈半利川ユニットに含まれ ない可能性もある.

この他, 奈半利川ユニットからは, 生痕化石が多産する(例えば, Katto, 1964, 1969;甲藤, 1973;甲藤・平, 1978;石田, 1993;Nara and Ikari, 2011). 露頭条件の

良い海岸線での報告が多いが、本地域からも複数の生 痕化石が報告されている。甲藤(1997)によれば、本 地域の北川村安倉や南隣の蛇谷より、ネレイテス (Nereites tosaensis)とよばれる生痕化石の報告がある。 なお Katto (1960)が新種記載した Nereites tosaensis は、 Protovirgulariaと同一属とされ、クルミガイなど原鰓類 の二枚貝化石やツノガイ(掘足綱)によるはい跡化石 とされる (Nara and Ikari, 2011).

4.6 砂岩組成と砕屑性ジルコン年代

本節では,四万十帯古第三系付加コンプレックスの砂 岩組成と砂岩からの砕屑性ジルコン U-Pb 年代について の研究を総括する.なお本報告における砕屑性ジルコン 年代の評価については、Hara and Hara (2019)の報告を 基に、最若の単一粒子年代(YSG)、最若の粒子集団年 代(YC1 σ 及びYC)を算出し、砕屑性ジルコンの最若 年代として最若の粒子集団年代(YC)を用いた.これ らの詳細は、第2章の第2.2節に記述した(第2.5図).

四万十帯古第三系付加コンプレックスの砂岩(以下, 古第三系砂岩)は、石英に富み、長石や多結晶石英及び 火山岩片・変成岩片・堆積岩片や雲母を含む。多結晶石 英や,石英に富む斑状細粒花崗岩の岩片を含むことを特 徴とする. また火山岩片として流紋岩など珪長質火山岩 を多く含み、変成岩岩片として片状構造が発達した石英 片岩や泥質片岩を含む. さらに堆積岩片として, 泥岩や シルト岩を含む、これらはしばしば偽礫としても認めら れる. また古第三系砂岩は、石英や珪長質な火山岩及び 深成岩の岩片を多く含むことで、灰白色~淡灰色を呈す ることが多い、なお東川ユニットの砂岩は、基質が多く 淘汰が悪く、細粒砂岩であることが多い.一方、海部ユ ニットと奈半利川ユニットの砂岩は、基質の少ないアレ ナイトであることが多く、中粒~極粗粒な砂岩を特徴と する. また東川ユニットに比べて, 海部ユニットと奈半 利川ユニットの砂岩は、より石英に富む傾向がある(第 4.15図).海部ユニットと奈半利川ユニットの砂岩につ いては, 公文・井内 (1976) によって, 詳しい報告があ り、両ユニットの砂岩は良く似た特徴を示す、本報告で の観察に基づいた砂岩は、公文・井内(1976)に比べ、 より岩片に富む傾向がある.この違いは、粗粒な多結晶 石英を,石英に含めるか,岩片に含めるかの相違により 生じている可能性がある. 古第三系砂岩の全岩化学組成 は、SiO₂及びTiO₂に富む傾向がある(Hara and Hara, 2019). なお前述の四万十帯白亜系付加コンプレックス の砂岩(以下,白亜系砂岩)も SiO₂に富む.砂岩組成 を考慮すると、SiO2の起源は、白亜系砂岩は主に珪長 質火山岩に, 古第三系砂岩は石英や多結晶石英に多く由 来すると考えられる. その他に古第三系砂岩は, 白亜系 砂岩に比べ Rb に富む.これは花崗岩などの基盤岩の上 昇・削剥により、もたらされたと解釈された(Hara and Hara, 2019). また海部ユニットと奈半利川ユニットの 砂岩は、礫岩を伴うことが知られている、礫種として、 砂岩・泥岩・チャート・結晶片岩・流紋岩・石英に富む 斑状細粒花崗岩が多く含まれる。特に奈半利川ユニット からはオルソコーツァイトも報告されている(公文・井 内, 1976). オルソコーツァイト礫は, 古くは古流向解 析により南方に位置する「黒潮古陸」と呼ばれた大陸基 盤からもたらされたと考えられた(公文・井内, 1976). しかし現在では、付加体地質学の概念に基づき「黒潮古 陸」の考えは否定され、オルソコーツァイト礫は、北中 国地塊(中朝地塊)からもたらされたと解釈されている (公文ほか, 2012; 鈴木・中屋, 2012).

東川ユニットと奈半利川ユニットの砂岩より、砕屑性

ジルコンU-Pb年代が得られている(Hara and Hara, 2019). 砕屑性ジルコンの年代分布について, 第4.16 図と第4.1表に示す.東川ユニットの砂岩は,後期白 亜紀に最若の粒子集団年代(YC = 80.5 ± 1.3 Ma)を持 つジルコンを含み,このピーク以外の年代を示すジルコ ンを含まない(第4.16 図).このことから山陽地方に おける 80 Ma頃の火成活動に起源を持つジルコン集団 から構成されていると考えられる.また,泥岩の放散虫 化石年代に一致する珪長質凝灰岩(YC = 48.7 ± 0.4 Ma) を起源とするジルコンは含まれない.以上より,砂岩中 の砕屑性ジルコンは,放散虫化石年代の始新世中頃より 有意に古い年代のみ含み,堆積同時性のジルコンが含ま れないと言える.

奈半利川ユニットの砕屑性ジルコン年代は, 暁新世, 後期及び前期白亜紀、ジュラ紀、三畳紀、ペルム紀、原 生代と、多数のピークを示す(第4.16図). これは、奈 半利川ユニットが堆積した始新世後半において、基盤岩の 急激な上昇が生じ、様々な年代の基盤岩が広く露出し削剥 されたためと考えられている (Hara and Hara, 2019). 一 方,砕屑性ジルコンの最若の粒子集団年代 (YC) として, 60.6 ± 4.0 Ma の暁新世が得られており、泥岩から産す る放散虫化石年代の始新世後半より有意に古い年代を示 す.四万十帯古第三系付加コンプレックスには、後背地 における火成活動が活発でないこと、基盤岩の上昇及び 削剥が顕著であったことから, 堆積同時性のジルコンが 供給されなかったと考えられた(Hara and Hara, 2019). すなわち四万十帯古第三系付加コンプレックスにおい て、砂岩の砕屑性ジルコン年代は堆積年代を決定するの に有用ではないと言える.

第4.15図 四万十帯古第三系付加コンプレックスの砂岩組成
 Qm:単結晶石英.F:長石.Lt:岩片.造構場の
 区分は Dickinson et al. (1983) による.

ユニット	東川ユニット	東川ユニット	奈半利川ユニット
試料番号	N1	N1-t	N2
放散虫化石年代 (Ma)	51-45	51-45	39–35
YSG (Ma)	72.2 ± 2.4	46.8 ± 2.7	54.5 ± 0.9
YC1σ (Ma)	74.0 ± 1.2	48.3 ± 0.4	58.8 ± 4.3
YCloの構成粒子数	18	23	2
MSWD	0.4	0.34	2.0
YC (Ma)	80.5 ± 1.3	48.7 ± 0.4	60.6 ± 4.0
YCの構成粒子数	59	31	8
MSWD	3.8	0.87	18
年代分布の割合(%)			
前期始新世 (51-47 Ma)	0	72.1	0
中期~後期暁新世(62-56 Ma)	0	4.7	8.5
後期白亜紀後半~前期暁新世 (70-62 Ma)	0	0	5.1
後期白亜紀 (100-70 Ma)	92.2	23.3	8.5
前期白亜紀 (145-100 Ma)	3.1	0	6.8
ペルム紀~ジュラ紀 (299-145 Ma)	0	0	40.7
カンブリア紀~石炭紀(541-299 Ma)	0	0	0
原生代 (2692-541 Ma)	4.7	0	30.5

第4.2表 四万十帯古第三系付加コンプレックスにおける砕屑性ジルコンの年代分布(%)

データの詳細は、Hara and Hara (2019) による. YSG (Youngest single grain age):最若の単一粒子年代. YCl σ (Youngest cluster age $\pm 1 \sigma$):最若の粒子集団年代. YC (Youngest cluster age):最若のピーク年代. MSWD (mean square weighted deviation):重みつき標準偏差の2乗平均. 詳しくは、第 2.5 図及び第 2章の第 2節に記した「砕屑性ジルコン U-Pb 年代の評価」を参照. なお奈半利川ユニットは、YSG が YCl σ のピーク集団から外れる. ただし YSG が 54.5 \pm 0.9 Ma に対し、二番目に若いジルコン粒子 年代は 57.4 \pm 2.5 Ma であり、誤差を考慮すると 0.5 Ma の差しかない. そこで Hara and Hara (2019) では. YCl σ から外れた YSG も 含めて、YC を算出した、本報告も YSG を含めた YC を採用する. なお、YSG を外した YC は 62.3 \pm 3.5 Ma を示し、YSG を含めた YC は 60.6 \pm 4.0 Ma に対して、両者は誤差の範囲で一致する.

 第4.16図 四万十帯古第三系付加コンプレックスの砕屑性ジルコン年代分布 Hara and Hara (2019) による.

(原 英俊)

本章では、四万十帯付加コンプレックスに発達する断 層と屈曲について述べる。四万十帯付加コンプレックス の分布様式を規制する重要な地質構造として、安芸構造 線、構造層序単元としてのユニット境界となる衝上断層、 ユニット内部に発達する衝上断層に分けて記述を行う。 さらに、これらの断層に斜交して発達する胴切断層につ いても記述を行う。褶曲については、各ユニットの地質 構造の記載内に記述した。

本地域において四万十帯付加コンプレックスの構造発 達史を理解する上で最も重要な断層として,安芸構造線 が挙げられる.これまで安芸構造線は,四国において 四万十帯付加コンプレックスの白亜系と古第三系の岩相 及び年代境界(甲藤,1977)として,また温度構造境界 (Mori and Taguchi, 1988)として位置づけられた.しか し本地域の安芸構造線は,その下位にも白亜系が認めら れ,従来の見解と異なる新知見が得られている(Hara and Hara, 2019).そこで安芸構造線については,これ までの研究史を取りまとめ本章の第5.1.1項に報告す る.

一般に付加コンプレックスにおいて, ユニット境界と なる衝上断層,及びユニット内部に衝上断層が発達する. これらの衝上断層は、イン・シーケンススラスト (insequence thrust;順序内衝上断層)ないしアウト・オブ・ シーケンススラスト (out-of-sequence thrust; 順序外衝上 断層)とみなされている。付加コンプレックスでは、陸 側に傾斜する衝上断層の発生に伴い、海溝充填堆積物や 海洋プレートの構成岩類が付加体に順次付け加わる.ま た衝上断層の発達に伴い、付加された地層は構造的に集 積し覆瓦状構造を形成し,結果として付加コンプレック スの厚層化が生じる.この様に形成される衝上断層は, 海溝側に順次発生していくことからイン・シーケンスス ラストと呼ばれ、さらに海溝から陸側に向かい、より古 い段階に形成された断層ほど次第に急傾斜となる特徴を 示す (例えば、木村、1998). イン・シーケンススラス トに対し、これらを切る低角の衝上断層が新たに形成さ れ,付加コンプレックスを著しく厚層化する.この衝上 断層は、イン・シーケンススラストに対し、その順序か ら外れるため、アウト・オブ・シーケンススラストと呼 ばれる (例えば、木村、1998). アウト・オブ・シーケ ンススラストは、その下盤の地層やイン・シーケンスス ラストを斜断すること、 上盤の地層が下盤の地層より若 いこと、温度構造の境界が認められることで認定される.

しかし、イン・シーケンススラストの再活動によって生 じたアウト・オブ・シーケンススラストの存在や、上述 の特徴を満たさない場合もあり、その認定が難しい場合 がある(木村、1998).本地域の四万十帯付加コンプレッ クスに発達する衝上断層のうち、ユニット境界として、 深瀬断層、犬吠断層、久木断層、塩深断層が挙げられる. ユニット内部に発達する衝上断層には、那佐断層、生見 断層、菅ノ上断層(新称)がある.これらのうち明らか に、アウト・オブ・シーケンススラストとして認定され る断層は、安芸構造線及び深瀬断層である.

本地域には、上述の衝上断層に斜交する胴切断層が発 達する.野根川上流から小川川にかけ北北東 – 南南西の のなどが 冷谷断層が、また北北西 – 南南東走向の東谷川断層が認 められる.また北北東 – 南南西の断層として、名村川~ 北路谷川にかけて馬路断層が、安田川沿いには安田断層 が認められる.またこれらは、四万十帯付加コンプレッ クスの側方連続性を断ち変位させるため、付加過程より 後に生じた断層である.特に安田断層は明瞭なリニアメ ントを示し、活断層の可能性が指摘されている(活断層 研究会編,1991).

本地域最南部では、奈半利川ユニットの走向が、東から西へかけてほぼ東西から北東へと変化する.これは室 戸屈曲(Hibbard *et al.*, 1992)の屈曲部に相当する.

本地域で認められた断層及び屈曲の位置について第 5.1図に示す.主な断層の姿勢については第5.2図に, 露頭写真を第5.3図に示す.

5.1 断 層

5. 1. 1 安芸構造線

研究史及び概要 江原(1928)によって安芸-浅川線 と命名された.その後,高知県(1961)は、安芸断層と 改称した.そして安芸断層の上盤は、須崎層の厚い粘板 岩(本報告の牟岐ユニットの千枚岩質泥岩に相当)から なることが指摘された.甲藤(1977)は、高知県(1961) の安芸断層が、四万十帯白亜系須崎層と古第三系大山岬 層の境界断層であることを重要とし、安芸構造線に改称 した.そして須鎗・山崎(1987)は、白亜紀と古第三紀 の放散虫化石の産出地点に基づき、四国東部における安 芸構造線の位置を定めた.

四国東部の高知県安芸市及び徳島県牟岐町付近では, 始新世の放散虫化石の報告(須鎗・山崎, 1987, 山崎ほ

第5.2図 断層の姿勢

(a) 東西走向の断層. ATL:安芸構造線. NF:中ノ川断層. InF:犬吠断層. KF:久木断層. SF:菅ノ上断層. (b) 北東 - 南西走向の断層. FF:深瀬断層. IkF:生見断層. YF:安田断層. すべて等積下半球投影で図示した.

第5.3図 断層の露頭写真

(a) 安芸構造線、框ノ木林道、ATL:安芸構造線、Mg:牟岐ユニット、(b) 安芸構造線、中ノ川川、ATL:安芸構造線、Mg:牟岐ユニット、Sh:釈迦ヶ生ユニット、F:断層、Phy:千枚岩質泥岩、Ss:砂岩、Br:破断した砂岩泥岩互層、(c) 深瀬断層、神山林道、FF:深瀬断層、Tn:谷山ユニット、Hw:日和佐ユニット、(d) 犬吠断層、北川村久木の犬吠橋、InF:犬吠断層、Sh:釈迦ヶ生ユニット、Hg:東川ユニット、Md:泥岩、Br:破断した砂岩泥岩互層、(e) 生見断層、林道島線、IkF:生見断層、奈半利川ユニット中に発達する。(f) 安田断層、馬路村平野、YF:安田断層、東川ユニット中に発達する。

か, 1993, 1995), 及び上盤の白亜系 (革 岐ユニット) と下盤の古第三系(大山岬ユニット・奈半利川ユニット・ 海部ユニット)の岩相と温度構造の明瞭な違い(Mori and Taguchi, 1988; Ohmori et al., 1997) に基づいて, 安 芸構造線の位置がほぼ確定したといえる. 馬路地域では 海陽町入尾の西、美濃ヶ谷沿いの林道で、安芸構造線の 露頭が確認される.断層面は、ほぼ東西走向を示し、北 に70°傾斜している.この露頭の概要は、日本の地質構 造100選(日本地質学会構造地質部会編, 2012)に掲載 されている.しかし現在では露頭は植生に覆われている. 久尾周辺においては、上盤は牟岐ユニットの混在岩、下 盤は海部ユニットの厚層理ないし塊状砂岩からなり、明 瞭な岩相の相違及び明瞭なリニアメントにより安芸構造 線が認識される。また東隣の甲浦地域では、海陽町吉田 付近の海部川まで, 安芸構造線の追跡ができる (三橋, 2016MS). これ以東は、安芸構造線は東西走向から北東 - 南西走向に変化し、 牟岐町付近まで追跡される (須鎗・ 山崎、1987). また海陽町久尾~吉田付近の安芸構造線 では、泥岩に含まれる炭質物のラマン分光計解析による 弱変成温度の推定が行われた(三橋, 2016MS).変成温 度は、安芸構造線の上盤で約 270 ~ 290℃ 及び下盤で約 200°C が見積もられており、約80°C の温度差を示す明 瞭な温度構造境界をなすことが示されている(三橋, 2016MS). 以上のように、安芸構造線は、白亜系と古第 三系境界であり、かつ明瞭な温度構造境界を伴うことを 特徴とする.

中央部の馬路村馬路~魚梁瀬ダム付近では、混在岩と破 断した砂岩泥岩互層が卓越すること, 化石の産出報告が なく白亜系と古第三系の分布が不明なため、研究者に よって安芸構造線の位置は異なっていた.高知県(1961). Yanai (1984) 及び甲藤 (1997) では、魚梁瀬ダム南方 の北川村釈迦ヶ生付近に、須鎗・山﨑(1987)はより北 の馬路村魚梁瀬付近に、日本地質学会編(2016)では魚 梁瀬ダム南方から釈迦ヶ生の間に, 安芸構造線が通ると している.本地域中央部では、化石の産出報告がなかっ たため、上盤と下盤における温度構造の違いから、安芸 構造線の位置を推定することが行われた. 鶴田ほか (1995)は、イライト結晶度による温度構造解析により、 温度構造境界が魚梁瀬ダム南方にあるとし、そこを安芸 構造線の位置とした. Hara et al. (2017) は, イライト 結晶度と炭質物のラマン分光計解析により、魚梁瀬ダム 南方から東川川上流にかけて、明瞭な温度構造境界を見 出し、その温度構造境界を安芸構造線とした.炭質物の ラマン分光計解析では、安芸構造線の上盤(牟岐ユニッ トの千枚岩質泥岩)で約270°C,下盤(本報告の釈迦ヶ 生ユニット)で約240°Cの弱変成温度が示され、上盤と 下盤において約30℃の温度差が見積もられた(Hara et al., 2017). これらの温度構造境界により推定される安 芸構造線の位置は、日本地質学会編(2016)の見解とほ ほ同様の位置であり、魚梁瀬ダム南方から釈迦ヶ生の間 を通る。

一方, Hara and Hara (2019) は, Hara *et al.* (2017) が示した温度境界から推定される安芸構造線の下盤側 より後期白亜紀放散虫化石を報告した. そして Hara et al. (2017) が示した安芸構造線は、温度構造境界とし ての性質を示す断層であり, 白亜系と古第三系の境界 断層ではないことを指摘した. また白亜系と古第三系 境界は、犬吠橋から釈迦ヶ生付近を通るほぼ東西走向で ほぼ垂直な断層であるとし、この断層を犬吠断層と新称 した. 犬吠断層は, 甲藤 (1997) が釈迦ヶ生付近で示し た安芸構造線の位置にほぼ一致する. 甲藤 (1997) によ る安芸構造線(本報告の犬吠断層)の上盤は安芸層群の 混在岩からなり,下盤は奈半利川層の泥岩優勢な砂岩泥 岩互層からなる.一方,本報告の犬吠断層では,上盤は 釈迦ヶ生ユニットの泥岩及び破断した砂岩泥岩互層、下 盤は東川ユニットの砂岩を伴う破断した砂岩泥岩互層か らなる. 犬吠断層の上盤及び下盤ともに, 破断した砂岩 泥岩互層から構成されるため、甲藤(1997)で指摘され たほど、岩相の相違は明瞭ではない。

Hara and Hara (2019) では、西南日本の四万十帯付加 コンプレックスにおける白亜系・古第三系境界断層と温 度構造境界断層を取りまとめた.そして、馬路地域の安 芸構造線は、白亜系・古第三系境界断層から上盤の白亜 系に派生したアウト・オブ・シーケンススラストである と解釈された.またその活動により、上盤と下盤におい て温度構造境界が形成されたと考えられた.なおアウト・ オブ・シーケンススラストとしての安芸構造線の活動時 期は、上盤における千枚岩質泥岩のイライト K-Ar 年、 砂岩中のジルコン FT 年代の評価から、始新世以降とさ れた (Hara *et al.*, 2017).

以上をまとめると、馬路村馬路~魚梁瀬ダム付近の安 芸構造線は、岩相境界が不明瞭であり、化石の産出も認 められなかったため、その位置については不確かであっ た、そこで、温度構造境界の認定から安芸構造線の位置 が推定された、そしてその後、放散虫化石及び砕屑性ジ ルコンより砕屑岩の堆積年代が明らかとなり、温度構造 境界とは異なる位置に、白亜系・古第三系境界の位置が 定まった経緯がある.そのため、馬路村馬路~魚梁瀬ダ ム付近における安芸構造線には、白亜系・古第三系境界 あるいは温度構造境界とする2つの解釈が存在すること になり、その名称の使用について混乱を生じかねない. そこで本報告では、馬路村馬路〜魚梁瀬ダム周辺におい て,温度構造境界(牟岐ユニットと釈迦ヶ生ユニット境 界)を安芸構造線とし(Hara et al., 2017), 白亜系・古 第三系境界(釈迦ヶ生ユニットと東川ユニット境界)を 犬吠断層 (Hara and Hara, 2019) とした. また本地域西 部の名村川~北路谷川では、北北東 - 南南西から北東 -
南西走向を持つ馬路断層(高知県,1961)が白亜系と古 第三系の境界をなす.馬路断層は,安芸構造線や四万十 帯付加コンプレックスの地質構造に斜交する胴切断層で ある.

断層露頭 安芸構造線の断層露頭は, 柾ノ木林道, 魚 梁瀬ダム西方,中ノ川川上流の林道沿いで確認された. **柾ノ木林道で観察される安芸構造線は、幅2mの脆弱な** ガウジを伴う破砕帯からなる. 破砕帯内部の断層面の姿 勢は, N63°E, 70°N である(第5.3図a). 安芸構造線 を境として、上盤は牟岐ユニットのチャート岩体を含む 混在岩,下盤は東川ユニットの破断した砂岩泥岩互層か らなる. なおこの露頭は、甲藤(1997)による北川村史 にも報告されている. 中ノ川川上流の林道沿いでは、安 芸構造線の上盤は千枚岩質泥岩からなる牟岐ユニット, 下盤は破断した砂岩泥岩互層からなる釈迦ヶ生ユニット から構成される(第5.3図b). 安芸構造線は、千枚岩 質泥岩と厚さ 50 cm の砂岩岩塊の間にあり、この地点で の断層の姿勢は、N63°E、80°Nである. また本断層から 派生したと考えられる小断層が,下盤側によく発達する. 小断層には、厚さ数 cm ~ 10 cm 程度の破砕帯が伴われ る. 魚梁瀬ダム西方では、釈迦ヶ生ユニットの泥岩優勢 な破断した砂岩泥岩互層の直上に、ガウジを伴う破砕帯 が幅1mほど認められる.この地点での断層面の姿勢は、 N87°W, 85°N である. この地点では、上盤が観察され ないため,安芸構造線から派生した断層の可能性もある.

5. 1. 2 ユニット境界となる衝上断層

深瀬断層 深瀬断層は、四万十帯付加コンプレックス の谷山累層と日和佐累層との境界断層に対して名付けら れた(公文, 1976, 1981).

本地域では、谷山ユニットを構成する破断した砂岩泥 岩互層及び混在岩と、日和佐ユニットの整然相を示す砂 岩泥岩互層との明瞭な岩相の相違から、断層の位置が推 定される.本地域北西部の深瀬断層は、加勝林道〜神山 林道〜二ノ谷林道〜宝蔵山林道を通り、北東 – 南西走向 で北東に高角な姿勢を示す.なお宝蔵山林道〜西川にか けて、また北隣北川地域やさらに東方では、深瀬断層は 東北東ないしほぼ東西の走向で、北に高角な姿勢を示す. 本地域の深瀬断層は、北東に走向が振れ、南に張り出す という特徴を示す(第2.1図).

断層露頭は、宝蔵山林道や神山林道沿いで認められた. 宝蔵山林道の深瀬断層は、上盤は谷山ユニットの破断し た砂岩泥岩互層、下盤は日和佐ユニットの礫岩を含む砂 岩からなる.断層は、破砕帯を伴わず、ほぼ東西走向で 垂直な姿勢を示す.神山林道では、N33°E、70°Sの姿勢 を示す断層面が認められる(第5.3図c).この地点では、 上盤は谷山ユニットの破断した砂岩泥岩互層、下盤は日 和佐ユニットの褶曲した砂岩泥岩互層からなり、50 cm ~2mの幅を持つ破砕帯が見られる. 東隣の甲浦地域では, Mori and Taguchi (1988) 及び Ohmori et al. (1997) によりビトリナイト反射率の検討 が行われ, 深瀬断層上盤の谷山ユニットは約 200℃,下 盤の日和佐ユニットは 100 ~ 150℃の弱変成温度を示す ことを明らかにし,約 50 ~ 100℃に及ぶ温度構造の不 連続性が指摘された. さらにこの温度構造は,地層が最 大被熱を経た後に深瀬断層がアウト・オブ・シーケンス スラストとして活動(始新世以降)し形成されたと解釈 された (Ohmori et al., 1997).

大吠断層 犬吠断層は、白亜系の釈迦ヶ生ユニットと 古第三系の東川ユニットとの境界断層で、Hara and Hara (2019) によって定義・命名された.犬吠断層は、ほぼ 東西の走向で北ないし南に急傾斜な姿勢を持つ.中川川 〜東川川〜北川村釈迦ヶ生の南を通る. 柾ノ木林道の西 方で安芸構造線に収斂するが,詳細は不明である.活動 時期に関しては、下盤の東川ユニットの堆積年代である 始新世前半以降に活動したと考えられるが、その詳細は 不明である.

大吠橋の路面陥没に伴う付け替え道路の法面に, 露頭 が確認された(第5.3図d). 上盤は釈迦ヶ生ユニット の泥岩及び泥岩優勢な破断した砂岩泥岩互層, 下盤は東 川ユニットの破断した砂岩泥岩互層からなる. この地点 での断層面は, 東西走向で, 86°Nの姿勢を示す. 下盤 の東川ユニットは破断が進み砂岩岩塊のレンズ化が著し い. また, 犬吠断層から派生したと考えられる小断層が 発達する(第5.4図).

久木断層 久木断層は、高知県(1961)により、大山 岬層と奈半利川層の境界断層として定義・命名された. 本報告では, 奈半利川ユニットの上限をなし, 東川ユニッ トと奈半利川ユニット、及び海部ユニットと奈半利川ユ ニットの境界断層に相当する.本地域中央部.馬路村栃 谷~北川村久木~大谷にかけて認められる.本調査によ り久木断層は、高知県(1961)で示された位置より、約 400 m ほど南に位置することが明らかとなった. 久木断 層は、東北東 – 西南西ないしほぼ東西の走向で、ほぼ垂 直な姿勢を示す.西は安田断層によって,東は冷谷断層 によって絶たれる. 久木断層の活動時期は始新世後半以 降であるが、詳細は不明である、なお、高知県(1961) は久木断層が安田断層に続くと解釈し、安田断層も久木 断層に含めている.しかし安田断層は、後述の通り活断 層の可能性もあり、本報告では久木断層とは別の断層と して考える. また久木断層は後述の塩深断層の西方延長 と考えられる.

本断層は、岩相境界として認められるとともに、大谷 〜山伏峠〜竹屋敷西方では、ほぼ東西方向に流路を持つ 大谷及び小川川の支流が明瞭なリニアメントをなすこと から確認される.なお、断層露頭は大谷の上流で確認さ れた.この地点での断層面は、N77°W、78°Nの姿勢を 示す.

第5.4図 犬吠断層下盤の東川ユニットに発達する小断層

塩深断層 塩深断層は、甲藤ほか(1974)によって、 彼らの奈半利川層上部層と下部層の境界断層として定 義・命名された. 本報告の海部ユニットと奈半利川ユニッ トの境界断層である.公文・井内(1976)は、海部ユニッ トと奈半利川ユニットの境界断層として宍喰断層を提唱 し、その断層周辺は地層が強い擾乱を受けているとした. そして、海部ユニットが分布する海陽町船津付近に宍喰 断層が通るとした.しかし地層の擾乱は, 宍喰断層によ る変形ではなく、海部ユニットの破断した砂岩泥岩互層 を指すと考えられる、そこで、海部ユニットの破断した 砂岩泥岩互層の下限を、海部ユニットと奈半利川ユニッ トの境界とした.この境界は、甲藤ほか(1974)の塩深 断層と一致する、そこで、甲藤ほか(1974)の塩深断層 を踏襲し、本報告での海部ユニットと奈半利川ユニット の境界断層とした.また前述の久木断層の東方延長と考 えられる. なお塩深断層の活動時期は始新世後半以降で あるが、詳細は不明である.

東隣甲浦地域の海陽町塩深〜船津の南を通り,北川村 竹屋敷の南に至る.東西ないし西北西-東南東の走向で ほぼ垂直な姿勢を示す.本地域において断層露頭は観察 されないが,海部ユニットの破断した砂岩泥岩互層ない し泥岩と,奈半利川ユニットの厚層理砂岩の岩相の相違 により,その位置を推定した.また甲藤ほか(1974)は, 海陽町昏道の南で,N80°W,50°Sの姿勢を示す断層露 頭を確認し,塩深断層を南傾斜の断層とした.さらに塩 深断層は、後述の那佐断層に収れんするとした.一方、 塩深断層は、久木断層の東方延長に相当すること、甲藤 ほか(1974)が示した地質図からは高角度な姿勢が読み 取れることから、本報告ではほぼ垂直な姿勢を示す断層 とした.

5. 1. 3 ユニット内部の衝上断層

那佐断層 那佐断層は,高知県(1961)で命名され, 甲藤ほか(1974)によって露頭の情報が記載された断層 である.本報告の海部ユニットの礫岩を伴う砂岩及び砂 岩泥岩互層と破断した砂岩泥岩互層の境界をなす.活動 時期は,海部ユニット堆積後の始新世後半以降であるが, 詳細は不明である.

東隣甲浦地域の海陽町那佐から本地域の海陽町船津北 方を通り竹屋敷の北方,大谷林道にいたる.ほぼ東西走 向で,約70°Nの傾斜を示す.本地域では,断層露頭は 観察されないが,厚層理砂岩と破断した砂岩泥岩互層の 岩相の相違により,その位置を推定した.甲藤ほか(1974) によれば,東隣甲浦地域で,2地点でN70°E,48°N及び N60°W,60°Nの姿勢を示す断層が観察されている.

生見断層 生見断層は、甲藤ほか(1974)によって命 名された奈半利川ユニット中に発達する断層である。甲 藤ほか(1974)は、東洋町生見から大斗付近に分布する 砂岩泥岩互層に対し、その上限に生見断層を定義した。 一方、公文・井内(1976)は、砂岩泥岩互層の下限に生 見断層の位置を移動し、甲藤ほか(1974)より約1,000 mほど南の位置に断層があると考えた、本報告では、砂 岩泥岩互層の下限に断層を認めたため、生見断層の位置 に関しては公文・井内(1976)の見解に一致する、平ほ か(1980a)の奈半利川層のA部層とB部層の境界に相 当する、活動時期は、奈半利川ユニットの堆積年代であ る始新世後半以降である、また室戸屈曲の影響をうけて いるので、中新世中頃以前に活動を終えていると考えら れる、そこで活動時期を、始新世後半~中新世中頃の間 とするが、詳細は不明である。

生見断層は、ほぼ東西ないし西北西 – 東南東の走向を 持ち、北に 60 ~ 70° 傾斜した断層である。東洋町生見 から野根川及び日曽谷川を通り、北川村尾河を通る。生 見断層は、後述する北北東 – 南南西走向の冷谷断層のよ り西の奈半利川流域でも認められる。冷谷断層の西側で は、後述の室戸屈曲の影響を受けて、断層の走向が北東 に振れる。林道島線及び後口山林道で断層露頭が確認さ れる。林道島線で確認された断層面は、N43°E、80°Sの 姿勢を持ち、幅約 20 cm の破砕帯を伴う断層が認められ る(第5.3 図 e)。後口山林道では、N23°E、70°N の姿 勢を持つ断層面が認められた(第5.1 図)。

菅ノ上断層 菅ノ上断層は、奈半利川ユニット内の、 砂岩及び砂岩泥岩互層と破断した砂岩泥岩互層の境界に 相当する. 樫地川から、北川村菅ノ上〜堂ヶ平〜平鍋付 近に分布する破断した砂岩泥岩互層の上限に位置する断 層を、地理的名称として菅ノ上を用い、菅ノ上断層と新 称する. 菅ノ上断層は、平ほか(1980a)の奈半利川層 の B 部層と C 部層の境界に相当する. 活動時期は、生 見断層と同様に,始新世後半〜中新世中頃の間とするが、 詳細は不明である.

菅ノ上断層は、ほぼ東北東 – 西南西ないし西北西 – 東 南東の走向を持ち、北ないし南に急傾斜した断層である. 東洋町樫地〜北川村菅ノ上〜堂ヶ平〜平鍋を通る. 室戸 屈曲に伴い、断層の走向が、樫地付近では西北西に、平 鍋付近では東北東に振れる. 堂ヶ平で断層露頭が確認さ れ、EW、85°Sの姿勢を示す(第5.1図).

5.1.4 胴切断層

冷谷断層 冷谷断層は,野根川と阿瀬川谷の出合い付 近から,冷谷上流部を通り,北川村竹屋敷東方にかけて, 北北東 – 南南西走向でほぼ垂直な姿勢を示す.本断層に 沿って,冷谷上流部の流路が東西から北北東 – 南南西に 変化する.20万分の1地質図幅「剣山」(神戸,1968) においても,走向が北北西 – 南南東と異なるが,ほぼ同 様の位置に胴切断層が描かれ,地層の東への連続性が絶 たれている.また四国地方土木地質図編集委員会(1998) においても,北北東 – 南南西走向の胴切断層が描かれて いる.この冷谷断層の南限は不明であるが,北限は北北 西 – 南南東走向で高角度な東谷川断層によって絶たれ る. 活動時期は,室戸屈曲を受けた生見断層を切るので, 中新世中頃以降である.

この断層を挟んで東西で、四万十帯付加コンプレック スのユニット構成が異なる.すなわち、冷谷断層の東側 では北より日和佐ユニット・牟岐ユニット・海部ユニッ ト・奈半利川ユニットに対し、冷谷断層の西側では北よ り日和佐ユニット・牟岐ユニット・釈迦ヶ生ユニット・ 東川ユニット・海部ユニット・奈半利川ユニットとなる.

東谷川断層 東谷川断層は,北北西の走向でほぼ垂直 な姿勢を持つ断層で,東谷川上流部で認められる.本断 層に沿って,東谷川の流路が東西から北北西 – 南南東に 変化する.活動時期は,冷谷断層を切るので,中新世中 頃以降である.

東谷川断層によって、牟岐ユニットと日和佐ユニット は、断層の東西で分布する岩相の構成が異なり、また地 層の走向方向が乱されている.すなわち断層の東側では、 牟岐ユニットの玄武岩岩類を含む混在岩及び日和佐ユ ニットの破断した砂岩泥岩互層が分布するのに対し、西 側では牟岐ユニットの混在岩及び日和佐ユニットの整然 相を示す砂岩及び砂岩泥岩互層からなる.また地層の走 向は、断層の東側で北東を示すのに対し、西側ではほぼ 東西を示す.東谷川沿いの林道では、N17°W、60°Wの やや西に傾斜した姿勢を持つ断層が確認された.ただし 岩相分布から推定される断層全体の姿勢はほぼ垂直であ る.

馬路断層 馬路断層は,高知県(1961)により命名さ れた北北東 – 南南西走向を持つ高角な断層で,安田断層 と平行に伸びる.高知県(1961)では,馬路村馬路周辺 において安芸断層(本報告の安芸構造線)に収斂すると した.しかし馬路断層は,より北東の馬路村中ノ川付近 において,安芸構造線及び犬吠断層を切る.そして馬路 断層は,四万十帯付加コンプレックスの内部構造を大き く斜断させる断層である.活動時期は,詳細は不明であ る.ほぼ平行に走る後述の安田断層と関連が強い可能性 がある.

本地域において、断層露頭は直接観察されていない. 大山岬東の名村川から馬路村北路周辺の北路谷川かけ て、明瞭なリニアメントを示し、牟岐ユニットと東川ユ ニットの境界をなす.安芸構造線は、馬路断層によって 南北約7kmの左横すべり変位を示す(第2.1図).馬 路断層は、大山岬東の海岸付近では、大山岬ユニット(本 地域には分布しない)と東川ユニットの境界をなす(第 2.1図;原ほか,2018).

安田断層 安田断層は、安田川に沿ってその西に位置 し、北北東 – 南南西走向に伸び、北西側が隆起した逆断 層である(活断層研究会編, 1991).安田断層は、活断 層の可能性があり、安田町の海岸では、¹⁴C年代の旧海 水準指標より、2,000~1,100年前における大山岬での 約4mの隆起が示されている(前杢, 1988).ただし本 地域における安田断層の活動度については,不明である (活断層研究会編, 1991).

東川ユニットと奈半利川ユニットの境界をなし、その 北延長は久木断層を切り、中ノ川川へ伸びる.馬路村平 野付近の東川川沿いに分布する東川ユニットには、安田 断層に沿って、安田断層と同様の北北東 – 南南西走向を 持つ断層が多く認められる(第5.3図 f).

5.2 屈曲

室戸岬から室戸半島の東部には、室戸屈曲(Hibbard et al., 1992)が発達する(第2.1図,第5.1図).室戸 屈曲は、その屈曲の度合を弱めながら、四万十帯白亜系 付加コンプレックス内にも追跡されている(Hibbard et al., 1992).奈半利川ユニットは、大局的に本地域の東 側では西北西 – 東南東ないし東西走向が卓越するのに対 し、西側では北東 – 南西走向が卓越する.本地域では、 古第三系付加コンプレックスの奈半利川ユニットのみ屈 曲による地層の変位が認められる.なお室戸屈曲の形成 は、四国海盆の沈み込みにより生じたとされ、その時期 は中新世中頃とされる(Hibbard et al., 1992).

6.1 概要及び研究史

本地域の第四系は,段丘堆積物,崩壊堆積物,谷底低 地堆積物,氾濫原堆積物,現河床堆積物及び人工堆積物 からなる.第四系の露頭地点の位置を第6.1図に示す.

本地域の段丘は河成段丘であり,かつ全て侵食段丘で ある.伊森川流域及び安田川流域では4面,奈半利川 流域と野根川流域では6面, 宍喰川流域では3面,海部 川流域では2面に区分される(第6.2図).各流域で下 から2~4段の段丘は連続性が良く,段丘ごとの比高が 小さい.安田川流域では完新世の¹⁴C年代が段丘堆積物 中から得られているので(植木, 2018a),それらを完新 世の沖積段丘とする.一方,沖積段丘より高い段丘は連 続性が悪く,段丘ごとの比高も大きい.奈半利川流域で は約2.9万年前の姶良 Tn テフラ(AT)が被覆層中から 見出されているので(植木, 2018b),それらを後期更新 世の低位段丘とする.従って,段丘堆積物の層序区分と しては,低位段丘堆積物と沖積段丘堆積物の2層を認定 し,地質図にその2層を表現した.

本地域における第四系の研究は、極めて乏しい、河成 段丘は、土地分類基本調査「馬路」(高知県、1982)と「日 本の海成段丘アトラス」(小池・町田、2001)に図示さ れているが、段丘堆積物の記載、流域間の対比、編年な どは行われていない、段丘堆積物以外の第四系の研究も 行われていない。

本地域における段丘堆積物は、四万十帯付加コンプ レックスを基盤として、これを不整合に覆い、層厚は数 mである.段丘堆積物の柱状図と露頭写真を、それぞれ 第6.3図と第6.4図に示す.

6.2 低位段丘堆積物 (tl)

北川村平鍋の地点 6.1 (第6.4図 a) では, 奈半利川 の右岸で基盤岩の上に層厚5m以上の礫層が重なる(第 6.3図). 礫層は最大径60 cm の砂岩の亜円礫からなり, 礫支持である.北川村二又(久保裏)の地点 6.2 (第6.4 図 b) では, 奈半利川の右岸で基盤の砂岩の直上に層厚 7 m以上の礫層が重なる. 礫層は最大径40 cm の砂岩の 亜角~亜円礫からなり, 礫支持である.また, 検土杖に よる掘削によって, 礫層の上から, 層厚7 cm 以上のフ ラッドロームのシルト層, 層厚25 cm の風成ローム層, 層厚40 cm の斜面堆積物のシルト層, 層厚15 cm の腐植 土層が採取された(植木, 2018b). 屈折率と EDX (Energy Dispersive X-ray Spectrometry:エネルギー分散型 X 線) 分析によって,ローム層中の火山ガラスは約 30,000 年前の姶良 Tn テフラ (AT) と約 7,300 年前の鬼界アカホ ヤテフラ (K-Ah) に対比された(植木, 2018b).

海部川流域の海陽町皆津の地点 6.3(第6.4図 c)では, 相川の左岸の現河床から約20m上の尾根には, 層厚1 m以上の最大径30cmの砂岩の亜角~角礫が見られる.

6.3 沖積段丘堆積物 (ta)

伊尾木川流域の安芸市伊田淵の地点 6.4 (第 6.4 図 d) では,伊尾木川の左岸で基盤岩の上に層厚 1 m 以上の礫 層が重なる (第 6.3 図). 礫層は最大径 80 cm の砂岩の 亜角~亜円礫からなり,礫支持である.

安田川流域の馬路村影の地点 6.5(馬路小中学校)では、 基盤岩の上に層厚 4.6 m の円礫層と層厚 40 cm のフラッ ドロームのシルト層が重なる(第6.3図;植木, 2018a). AMS (Accelerator Mass Spectrometry:加速器質量 分析)法により、礫層最上部の砂のバルク試料から8,480 ± 30 yrs BP (2 σ 暦年代範囲は 7,584 ~ 7,515 cal BC), フラッドロームのシルト層最上部のシルトのバルク試料 から 6,015 ± 25 yrs BP (4,986 ~ 4,841 cal BC) の 14 C 年代が得られた.馬路村下田の地点 6.6 では、安田川の 右岸で基盤岩の上に層厚1mの礫層が重なる(第6.3 図). 礫層は最大径 25 cm の砂岩の円礫からなり、礫支 持である. その上には, 層厚 40 cm のシルト層と層厚 10 cmの腐植土層が重なる.馬路村八川の地点6.7(第6.4 図 e) では、馬路川の左岸で基盤の砂岩泥岩互層の上に 層厚1mの礫層が重なる(第6.3図). 礫層は最大径20 cmの砂岩の亜円礫からなり、礫支持である。

奈半利川流域の北川村入木の地点 6.8 (第 6.4 図 f) では、奈半利右岸で基盤岩の上に層厚 50 cm 以上の礫層 が重なる(第 6.3 図). 礫層は最大径 80 cm の砂岩の亜 円~亜角礫からなり、礫支持である.北川村竹屋敷の地 点 6.9 (第 6.4 図 g)では、小川川右岸で基盤の泥岩の 上に層厚 1 m 以上の礫層が重なる(第 6.3 図). 礫層は 最大径 70 cm の砂岩の亜角礫からなり、礫支持である.

野根川流域の東洋町大斗の地点 6.10 では,野根川の 右岸で基盤岩の上に層厚 1 m 以上の礫層が重なる(第 6.3 図). 礫層は最大径 60 cm の砂岩の円~亜円礫から なり,礫支持である.

第6.1図 第四系の地点位置図基図は、国土地理院発行の数値地図 50,000(地図画像)を用いた.

Tephra	MIS	×10 ka	伊尾木川	安田川	奈半利川	野根川	宍喰川	海部川(相川)	段丘堆積物
			——伊田淵3面	━━ 瀬切面	島2面	—— 川口3面	広岡2面	—— 大内3面	
	1		——伊田淵2面	—— 馬路3面		—— 川口2面			沖積段丘堆積物
K-Ah -			━━ 伊田淵1面	馬路2面 		——川口1面	—— 広岡1面	——大内1面	
		1 -			—— 日曽浦面	—— 真砂瀬2面			
	2	2 -			—— 平鍋面	—— 真砂瀬1面	—— 塩深面		低位段丘堆積物
AT -					久保裏面	━━ 船津面			
	3	4 -							
	5	5 -							

第6.2図 段丘堆積物の区分と編年

K-Ah:鬼界アカホヤテフラ、AT:姶良 Tn テフラ、MIS:Marine Isotope Stage(海洋酸素同位体ステージ)

第6.3図 段丘堆積物の柱状図

数字は地点番号を示す.低位段丘堆積物は,地点 6.1 では平鍋面,地点 6.2 では久保裏面を構成する.沖積段丘堆積物は, 地点 6.4 では伊田淵 1 面,地点 6.5 では馬路 2 面,地点 6.6 では馬路 3 面,地点 6.7 では馬路 2 面,地点 6.8 では島 2 面, 地点 6.9 では島 2 面,地点 10 では川口 2 面,地点 11 では広岡 1 面を構成する.

第6.4図 段丘堆積物の露頭写真→

(a) 低位段丘堆積物.北川村平鍋(地点 6.1).(b) 低位段丘堆積物.北川村二又(地点 6.2).(c) 低位段丘堆積物.海陽町皆津(地点 6.3).(d) 沖積段丘堆積物.安芸市伊田渕(地点 6.4).(e) 沖積段丘堆積物.馬路村八川(地点 6.7).(f) 沖積段丘堆積物.馬路村久木(地点 6.8).(g) 沖積段丘堆積物.北川村竹屋敷(地点 6.9).(h) 沖積段丘堆積物.海陽町小谷(地点 6.11).
 ねじり鎌の長さは 35 cm.野帳の長さは 16 cm.礫層の層厚は,地点 6.1 では約 5 m,地点 6.3 では約 1 m,地点 6.7 では約

ねじり鎌の長さは 35 cm. 野帳の長さは 16 cm. 礫層の層厚は, 地点 6.1 では約 5 m, 地点 6.3 では約 1 m, 地点 6.7 では約 1 m, 地点 6.8 では約 50 cm.

第6.5図 崩壊堆積物の露頭写真

(a) 崩壊堆積物. 馬路村土川(地点 6.13). (b) 崩壊堆積物. 北川村平鍋(地点 6.14). (c) 崩壊堆積物. 北川村島(地点 6.16).
(d) 崩壊堆積物. 北川村島(地点 6.17). (e) 崩壊堆積物. 北川村島(地点 6.18). (f) 崩壊堆積物. 北川村安倉(地点 6.19). ねじり鎌の長さは 35 cm. 崖の高さは, 地点 6.13 では約 2.5 m, 地点 6.14 では約 6 m, 地点 6.16 では約 3 m, 地点 6.17 では約 2 m, 地点 6.18 では約 2.5 m.

第6.6図 深層崩壊地の地形分類図(a) 平鍋崩壊地.(b) 島崩壊地.L1,L2,L3 は堆積段丘で,順に新しくなる.

第6.7図 せき止め湖堆積物の露頭写真

 (a)露頭の全景(東隣,海陽町村山の西). 崖の高さは約6m.
 (b)せき止め湖堆積物.

宍喰川流域の海陽町小谷の地点 6.11(第6.4図h)では、宍喰川の右岸で基盤の泥岩の上に層厚 3.5 m 以上の 礫層が重なる(第6.3図). 礫層は最大径 50 cm の砂岩の亜角礫からなり、礫支持である.

海部川流域の海陽町上大内の地点 6.12 では,相川の 右岸で旧流路跡に最大径 50 cm の砂岩の亜角礫が転石と して見られる.

6.4 崩壊堆積物 (l)

本地域には,深層崩壊による年代不詳の崩壊堆積物が 多数分布している.その中で,露頭があるものを以下に 記載し,露頭写真を第6.5図に示す.

安田川流域の馬路村土川では、安田川の右岸で層厚約

20 mの不淘汰な礫層が堆積段丘をなす. 地点 6.13(第6.5 図 a) では,最大径 60 cmの砂岩の角~亜角礫からなり, 逆級化の層相を示す.

奈半利川流域の北川村平鎬における平鍋崩壊地では, 奈半利川右岸のダム湖より高所で層厚100m以上の不淘 汰な礫層が3段の堆積段丘をなす(第6.6図a).地点6.14 (第6.5図b)では,最大径3mの砂岩の角礫からなり, 逆級化の層相を示す.地点6.15では,層厚20cmの腐 植土層に覆われる.北川村泉と島における島崩壊地では, 奈半利川両岸で層厚40m以上の不淘汰な礫層が2段の 堆積段丘をなす(第6.6図b).高位のものは,地点6.16 (第6.5図c)では,最大径1mの砂岩の角礫からなり, 逆級化の層相を示す.低位のものは,地点6.17(第6.5 図d)では,最大径1mの砂岩の角~亜角礫からなり,

第6.8図 樫地川の谷底低地の遠望写真

第6.9図 現河床堆積物の遠望写真(a)安田川の現河床堆積物.馬路村影(地点 6.20).(b)奈半利川の現河床堆積物.北川村堂ヶ平(地点 6.21)

逆級化の層相を示す.最上部は茶色のシルトを基質とし, 層厚 20 cm の腐植土層に覆われる.また,奈半利川対岸 の地点 6.18(第6.5図 e)では,最大径 1.5 m の砂岩の 角~亜角礫からなり,塊状あるいは逆級化の層相を示す. 北川村安着では,小川川右岸で層厚 10 m 以上の不淘汰 な礫層が堆積段丘をなす.地点 6.19(第6.5図 f)では, 最大径 80 cm の砂岩の角礫からなり,逆級化の層相を示 す.礫層は層厚 15 cm の腐植土層に覆われる.

東隣 甲 浦地域の海部川流域の海陽町村山の西(N 33°38′50″10, E134°15′59″13)では,相川の左岸で層厚 3 m 以上のせき止め湖堆積物が見られる(植木, 2018c, 第 6.7 図). せき止め湖堆積物は,葉,球果,材などの 植物片を多量に含み,下流に向かって緩く傾斜する葉理 が発達した腐植質シルト層からなり,層厚 3 m の段丘堆 積物に覆われている. AMS 法により,植物片からは 6,620 ± 30 yrs BP (2 σ 暦年代範囲は5,628 ~ 5,531 cal BC) と6,650 ± 30 yrs BP (5,620 ~ 5,508 cal BC, 92.7%; 5,503 ~ 5,493 cal BC, 2.7%)の¹⁴C 年代が得られた.周辺 の山腹斜面に深層崩壊の地形は認められないが,このせ き止め湖堆積物は侵食地形が削剥されてしまった古い深 層崩壊の指標となるものであるため,崩壊堆積物に含め た.

6.5 谷底低地堆積物 (vf)

野根川の支流の弾野川と整地川沿いの谷底低地は,山 地斜面における深層崩壊あるいは多数の表層崩壊によっ てもたらされた,大~巨礫サイズの砂岩の角~亜角礫か らなる.礫によって谷が広く埋積され,大部分は段丘化 している.樫地川沿いの谷底低地堆積物の一部は,宝永 4(1707)年12月の宝永地震後の深層崩壊と土石流によっ てもたらされた(中西, 2013;井上, 2015, 2018;井上・ 中西, 2015).東洋町名留川の集落から,樫地川の谷底 低地を遠望した写真を第6.8図に示す.

6.6 氾濫原堆積物 (fp) 及び現河床堆積物

氾濫原堆積物は,各流域の本流と一部の支流に沿って 限定的に分布し,段丘化していない低地を構成する.野 根川の中~下流部では分布が大きく,東洋町名留川の集 落が形成されている自然堤防とその周辺の後背湿地を構 成する.直接観察できる露頭はないが,現河床の表層堆 積物に基づけば,各河川の上流部では砂礫層,中~下流 部では礫層からなると推定される.

現河床堆積物は,安田川,奈半利川,野根川の河道に 沿って分布するが,地質図に図示できる広がりを持たな い.一般に山地斜面からの砂礫の供給が豊富で,奈半利 川では魚梁瀬ダム,久木ダムによって流量が少ないため, 河道には基盤岩の露出が乏しく,堆積物が卓越している. 大~巨礫サイズの砂岩の亜角~亜円礫からなる.馬路村 影の地点 6.20 における安田川の現河床堆積物を第6.9 図 a,北川村堂ヶ平の地点 6.21 における奈半利川の現河 床堆積物を第6.9 図 b に示す.

6.7 埋立地 (r)

高知県北川村丸山の集落がある造成地の一部は,斜面 を切土した基盤岩の砂礫で埋められている(安岡, 1966).北川村釈迦ヶ生の奈半利川左岸の谷は砂礫で盛 土されている.

7.1 自然災害

本地域では、山地斜面が急峻で雨量が多いため、表層 崩壊が毎年のように発生するだけでなく、深層崩壊も発 生することもある.崩壊の地点の写真を第7.1図に示す.

北川村平鍋の東の地点7.1 (平鍋橋) における奈半利 川左岸と,馬路村土川の北の地点7.2 における安田川左 岸における表層崩壊の様子を第7.1図a,bにそれぞれ 示す.昭和51 (1976)年には北川村島の奈半利川左岸 で大規模な表層崩壊があり,昭和63 (1988)年には北 川村二又,平成6 (1994)年と平成8 (1996)年には北 川村島で落石による被害があった (北川村,1997).

平成23 (2011)年7月19日の台風6号によって,北 川村では深層崩壊が3ヶ所で発生した.本地域の北川村 平鍋及び南隣奈半利地域の北川村小島で発生した深層崩 壊の遠望を第7.2 図に示す.本地域の北川村平鍋では, 渓流上流部の山地斜面で,幅90m,水平長200m,比 高160m,鉛直方向の最大崩壊深約20mの深層崩壊が 発生し,これが土石流となって平鍋ダム湖に流入し,湖 水面が上昇した.その結果,湖水がダムの天端を乗り越 えた(笹原ほか,2011,2012;須内ほか,2011;川西, 2013;土居,2016;笹原,2016).北川村平鍋における 現在の深層崩壊地の遠景と,地点7.3 におけるダム湖に 流入した砂礫,復旧工事の様子をそれぞれ第7.1 図 c, d, e に示す.

宝永4(1707)年12月の宝永地震と半年後の大雨によっ て、東洋町名留川の西の樫地川左岸の稜線で深層崩壊が 発生した(中西,2013;井上,2015,2018;井上・中西, 2015). もともと稜線には線状凹地が発達する緩斜面が あり、そこが崩壊して土石流が流下し、名留川の集落を 埋没させた.

7.2 資源地質

本地域に稼働中の金属資源及び非金属資源の鉱床・鉱 山はない.過去に採掘されていた金属鉱床として銅鉱床 及びマンガン鉱床がある.

銅鉱床は,野根川上流において完確鉱山がある(清島, 1959). 宍喰鉱山は,牟岐ユニットのチャート及び玄武 岩類に胚胎する.鉱石品位は,銅(Cu)が1%以下,硫 黄(S)が33~38%とされる.明治初期に開発され, 休山と再稼行を繰り返し,1953年に閉山した.記録の (原 英俊·植木 岳雪)

残されている 1951 ~ 1953 年には,3,213 トンの出鉱が あったが,これ以前の採掘については詳細が不明である (地質調査所四国出張所,1980).また小川川上流,北川 だけを見ま れ方では,第三丸正鉱床がある(地質調査所四 国出張所,1980). 牟岐ユニットの泥岩・砂岩及び玄武 岩類に胚胎する.鉱石品位は,良質部で,銅(Cu)が 10%,硫黄(S)が35%である.また北隣の北川地域では, 谷山ユニットの玄武岩類や玄武岩類に伴うチャートに胚 胎する銅鉱床ないし含銅硫化鉄鉱床が知られている(清 島,1960,渡辺ほか,1973,地質調査所四国出張所, 1980).

マンガン鉱床は、小川川の最上流部に、瀬戸ヶ谷鉱床 がある. 牟岐ユニットの泥岩と玄武岩類に胚胎する. 主 に炭酸マンガン鉱からなり、鉱石品位はマンガン (Mn) が25~32%である.

7.3 鉱泉

馬路村白蒲と馬路村魚簗灘に、それぞれ馬路温泉とや なせの湯と呼ばれる鉱泉があり、源泉を加温して宿泊施 設及び日帰り入浴施設として利用されている.馬路温泉 はナトリウム-炭酸水素塩・塩化物泉、やなせの湯はナ トリウム-炭酸水素塩泉である.また馬路温泉は、水温 15.9°C, pH7.9 で、毎分 6.5 リットルの噴出量がある(馬 路 温 泉、http://umaji.gr.jp/images/hotspring/seibun_2.jpg, 2019 年 6 月 7 日参照).

7.4 名 勝

安田川の支流に、^{かま が}たの滝と呼ばれる落差約 10 m の 2 段 の 滝 が ある (安田 町, https://www.town.yasuda. kochi.jp/life/dtl.php?hdnKey=1030, 2019 年 6 月 7 日参照). 釜ヶ谷の滝は,奈半利川ユニットの塊状砂岩からなる(第 7.3 図 a).また野根川の船津の南,高知県と徳島県の 県境付近において、牛ヶ石馬ヶ石と呼ばれる名勝がある (東洋 町 観 光 旅 サ イト, https://www.toyo-kochi.jp/play/ nonegawa/, 2019 年 6 月 7 日参照).牛ヶ石馬ヶ石も奈 半利川ユニットの塊状砂岩からなる(第7.3 図 b).北 川村落合の眼鏡橋から広瀬付近にかけた小川川の河床に は、小川川瓤穴岩群(第7.3 図 c, d)と呼ばれる凹み のある白い砂岩の巨礫が点在する(北川村, http://www. kitagawamura.jp/sanpo/05.htm, 2019 年 6 月 7 日 参 照).

第7.1図 表層崩壊及び深層崩壊の写真
 (a)表層崩壊.北川村平鍋の平鍋橋(地点7.1).(b)表層崩壊.馬路村土川(地点7.2). 崖の高さは約30 m.(c)深層崩壊の遠望.北川村平鍋(地点7.3).(d)ダム湖に流入した砂礫.(e)復旧工事の様子.

これらの巨礫は, 奈半利川ユニットの砂岩からもたらさ れている. 馬路村相名には, 安田川に相名の丸石と呼ば れる巨石がある(馬路村, http://www.umajimura.jp/ publics/index/43/, 2019年6月7日参照).

第7.2図 北川村平鍋及び小島の深層崩壊の遠望写真

第7.3図 馬路地域の名勝

(a) 釜ヶ谷の滝. 滝の高さは約10 m. (b) 牛ヶ石馬ヶ石. (c) 小川川の巨礫. 写真の横幅は約20 m. (d) 小川川甌穴群. 水が溜まった丸い窪みが甌穴.

献

- 麻木孝郎・吉田武義(1998)徳島県南東部の四万十帯北帯に分 布する沈み込み帯型緑色岩. 岩鉱, vol. 93, p. 83–102.
- 麻木孝郎・吉田武義(1999)徳島県南東部に分布する四万十帯 玄武岩類の変質作用. 岩鉱, vol. 94, p. 11–36.
- 地質調査所四国出張所(1980)四国地方の鉱山分布と地質・鉱 床の概要.地質調査時所四国出張所,280 p.
- Cohen, K.M., Finney, S.C., Gibbard, O.L. and Fan, J.X. (2013; updated) The ICS International Chronostratigraphic Cart. *Episode*, vol. 36, p. 199–204.
- Dickinson, W.R. and Gehrels, G.E. (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. *Earth Planet. Sci. Lett.*, vol. 288, p. 115–125.
- Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg F.A. and Ryberg, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. *Geol. Soc. Amer. Bull.*, vol. 94, p. 222–235.
- 土居寛幸(2016) 奈半利川の深層崩壊に起因する土石流対策. 砂防学会誌, vol. 69, p. 42-47.
- Domeier, M., Shephard, G.E., Jakob, J., Gaina, C., Doubrovine, P.V. and Torsvik, T.H. (2017) Intraoceanic subduction spanned the Pacific in the Late Cretaceous–Paleocene. *Science Advances*, vol. 3, eaa02303.
- Fedo, C.M., Sircombe, K.N. and Rainbird, R.H. (2003) Detrital zircon analysis of the sedimentary record. *In* Manchar, J.M. and Hoskin, P.W.O., Eds., *Zircon*, Reviews of Mineralogy and Geochemistry, vol. 53, p. 276–303.
- Festa, A., Pini, G.A., Dilek, Y. and Codegone, G. (2010) Mélanges and mélange-forming processes: a historical overview and new concepts. *Int. Geol. Rev.*, vol. 52, p. 1040–1105.
- Festa, A., Pini, G.A., Ogata, K. and Dilek, Y. (2019) Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. *Gond. Res.*, vol. 74, 7-30.
- Gradstein, F.M., Ogg, J.G., Schmits, M. and Ogg, G. (2012) The Geologic Time Scale 2012. Elsevier, 1176 p.
- 原 康祐・原 英俊 (2016) 高知県馬路 魚梁瀬地域の安芸構 造線周辺から産出する後期白亜紀及び始新世放散虫化石. 日本地質学会第 123 年学術大会講演要旨, p. 255.
- 原 英俊・原 康祐 (2019) 高知県馬路地域,四万十帯白亜系 付加コンプレックスのチャートから産する放散虫化石.地 質調査研究報告. vol. 70, p. 117–123.
- Hara, H. and Hara, K. (2019) Radiolarian and U-Pb zircon dating of Late Cretaceous and Paleogene Shimanto accretionary complexes, Southwest Japan: temporal variations in provenance and offset across an out-of-sequence thrust. *Jour. Asian Earth*

Sci., vol. 170, p. 29-44.

- 原 英俊・原 康祐・栗原敏之(2012)徳島県北川地域の 四万十帯付加コンプレックスから産出した白亜紀放散虫化 石. 地質調査研究報告, vol. 63, p. 301–308.
- 原 英俊・植木岳雪・辻野泰之(2014)北川地域の地質.地域 地質研究報告(5万分の1地質図幅). 産総研地質調査総 合センター, 72 p.
- Hara, H., Nakamura, Y., Hara, K., Kurihara, T., Mori, H., Iwano, H., Danhara, T., Sakata, S. and Hirata, T. (2017) Detrital zircon multi-chronology, provenance, and low-grade metamorphism of the Cretaceous Shimanto accretionary complex, eastern Shikoku, Southwest Japan: tectonic evolution in response to igneous activity within a subduction zone. *Island Arc*, vol. 26. e12218, doi 10.1111/iar.12218.
- 原 英俊・青矢睦月・野田 篤・田辺 晋・山崎 徹・大野哲二・ 駒澤正夫(2018)20万分の1地質図幅「高知」(第2版). 産業技術総合研究所地質調査総合センター.
- Hasebe, N., Tagami, T. and Nishimura, S. (1993) Evolution of the Shimanto accretionary complex: a fission-track thermochronologic study. In Underwood, M. B., ed., Thermal Evolution of the Tertiary Shimanto Belt, Southwest Japan: An Example of Ridge-trench Interaction. Geol. Soc. Amer., Spec. Paper, no. 271, p. 121–136.
- Hashimoto, H., Ishida, K., Yamazaki, T., Tsujino, Y. and Kozai, T. (2015) Revised radiolarian zonation of the Upper Cretaceous Izumi inter-arc basin (SW Japan). *Revue de micropaléontologie*, vol. 58, p. 29–50.
- 波多江信広(1960)天草下島南半部の地質と地質構造. 鹿児島 大学理科報告, vol. 9, p. 61–107.
- Hibbard, J., Karig, D. and Taira, A. (1992) Anomalous structural evolution of the Shimanto Accretionary Prism at Murotomisaki, Shikoku Island, Japan. *Island Arc*, vol. 1, p. 133–147.
- Hollis, C.J. and Kimura, K. (2001) A unified radiolarian zonation for the Late Cretaceous and Paleocene of Japan. *Micropaleontology*, vol. 47, p. 235–255.
- Hsü, K.J. (1974) Melanges and their distinction from oliststromes. In Dott, R.H., Jr. and Shaver, R.H., eds., Modern and Ancient Geosynclinal Sedimentation. Soc. Eco. Paleont. Minel. Spec. Pub., no. 19, p. 321–333.
- 飯塚亮太・高木秀雄・本田恵美・岩野英樹・石田章純・佐野有 司(2014)四国における始新統および中新統中の結晶片岩 礫の統合的な放射年代測定.地球惑星科学連合2014年大 会予稿, SMP46-P08.
- Ikesawa, E., Kimura, G., Sato, K., Ikehara-Ohmori, K., Kitamura, Y., Yamaguchi, A., Ujiie, K. and Hashimoto, Y. (2005) Tectonic incorporation of the upper part of oceanic crust to overriding plate of a convergent margin: an example from the Cretaceous-

early Tertiary Mugi Mélange, the Shimanto Belt Japan. *Tectonophysics*, vol. 401, p. 217–230.

- 井上公夫(2015) 宝永地震と半年後の激甚災害 ~高知県東洋 町名留川の大規模崩壊地を歩く.地理, vol. 60, p. 66-73.
- 井上公夫(2018)1707年の宝永地震と半年後の豪雨による高 知県東洋町名留川の大規模崩壊地.歴史的大規模土砂災害 地点を歩く、丸源書店, p. 82–91.
- 井上公夫・中西一郎(2015) 宝永地震(1707) による高知県東 洋町名留川の大規模土砂災害.歴史地震, no. 30, p. 222.
- 石田啓祐(1993)四国四万十帯「宍喰浦の化石漣痕」. 地質ニュース, no. 464, p. 26–29.
- 石田啓佑(1998)四国東部,四万十累層群の岩相層序と放散虫 年代.大阪微化石研究会誌,特別号, no. 11, p. 189–209.
- 石田啓祐・橋本寿夫(1998)四国東部,四万十北帯の上部白亜 系チャート – 砕屑岩シーケンスと放散虫生層序.大阪微化 石研究会誌 特別号, no. 11, p. 211–225.
- 石濱茂崇・君波和雄(2000)砂岩と頁岩の化学組成に基づく四 国東部秩父累帯南帯・四万十帯北帯の岩石相ユニット.地 質学論集, no. 57, p. 97–106.
- 勘米良亀齢(1976)過去と現在の地向斜堆積体の対応Ⅰ・Ⅱ. 科学, Vol., 46, p. 284-291, 371-378.
- Katto, J. (1960) Some problematica from the so-called unknown Mesozoic strata of the southern part of Shikoku, Japan. Sci. Rep., Tohoku Univ., 2nd Ser. (Geol.), Spec. vol., no.4, p.323–334.
- Katto, J. (1964) Some sedimentary structures and problematica from the Shimanto terrain of Kochi Prefecture, Japan. *Res. Rep. Kochi Univ.* (*Nat. Sci.*), vol. 13, p. 45–58.
- Katto, J. (1969) A note on the cross-sections of *Nereites* from the Eocene Muroto Formation of Kochi Prefecture, Japan. *Res. Rep. Kochi Univ.* (*Nat. Sci.*), vol. 18, p. 21–23.
- 甲藤次郎(1973)土佐の"ゲテモノ"と"イゴッソオ". 地質ニュース, no. 231, p. 58-65.
- 甲藤次郎(1977)四万十帯あらかると~安芸-宿毛構造線と室 戸半島層群の今昔~. 地質ニュース, no. 271, p. 11–17.
- 甲藤次郎(1997)第二節 地質,第二章 自然環境・地質,第 一編 村の大要と自然. 北川村史 通史編. 北川村教育委 員会, p. 51–118.
- 甲藤次郎・平 朝彦(1978)室戸半島層群の岩相と堆積環境. 地質ニュース, no. 287, p. 21-31.
- Katto, J. and Tashiro, M. (1979) A study on the molluscan fauna of the Shimanto Terrain, Southwest Japan. Part 2: bivalve fossils from the Muroto-hanto Group in Kochi Prefecture, Shikoku. *Res. Rep. Kochi Univ.* (*Nat. Sci.*), vol. 28, p. 1–11.
- 甲藤次郎・三井 忍・小出和男(1974)室戸半島北東部の徳島 県宍喰~高知県野根間の地質(四万十帯地向斜における地 層変形機構の研究一その1).高知大学学術研究報告(自 然科学), vol. 23, p. 123–133.
- 甲藤次郎・小出和男・三井 忍 (1976) 室戸半島東部の高知県 野根~佐喜浜間の地質 (四万十帯地向斜における地層変形 機構の研究一その2). 高知大学学術研究報告 (自然科学), vol. 24, p. 5–10.
- 甲藤次郎・松丸国照・岡田尚武・平 朝彦(1979)室戸半島層

群および同相当層から始新世化石の発見とその意義. 地質 ニュース, no. 294, p. 41-43.

- 活断層研究会(編)(1991)新編 日本の活断層:分布と資料. 東京大学出版会,東京,437 p.
- 川西浩二 (2013) 深層崩壊対策の現状について.四国技報, vol. 12, p. 32–36.
- 川添 晃(1974)室戸半島北部に分布する新第三系の再検討. 地球科学, vol. 28, p. 211–217.
- 君波和雄·柏木庸孝·宮下純夫(1992)上部白亜系牟岐累層(四 国東部)中の in-situ 玄武岩類の産状とその意義. 地質学 雑誌, vol. 98, p. 867–883.
- Kiminami, K., Miyashita, S. and Kawabata, K. (1994) Ridge collision and *in situ* greenstones in accretionary complexes: an example from the Late Cretaceous Ryukyu Islands and southwest Japan margin. *Island Arc*, vol. 3, p. 103–111.
- 君波和雄・松浦卓史・岩田尊夫・三浦健一郎(1998)四国東部 に分布する白亜系四万十累層群の砂岩組成と白亜紀火山活 動との関連. 地質学雑誌, vol. 104, p. 314–326.
- Kimura, G., Yamaguchi, A., Hojo, M., Kitamura, Y., Kameda, J., Ujiie, K., Hamada, Y., Hamahashi, M. and Hina, S. (2012) Tectonic mélange as fault rock of subduction plate boundary. *Tectonophysics*, vol. 568–569, p. 25–38.
- 木村克己(1998)付加体の out-of-sequence thrust. 地質学論集, no. 50, p. 131–146.
- 北川村(1997)北川村史 通史編. 北川村, 1243 p.
- Kitamura, Y., Sato, K., Ikesawa, E., Ohmori-Ikehara, K., Kimura, G., Kondo, H., Ujiie, K., Onishi, C.T., Kawabata, K., Hashimoto, Y., Mukoyoshi, H. and Masago, H. (2005) Mélange and its seismogenic roof décollement: a plate boundary fault rock in the subduction zone – an example from the Shimanto Belt, Japan. *Tectonics*, vol. 24, TC5012, doi: 10.1029/2004TC001635.
- 清島信之(1959)徳島県宍喰鉱山調査報告. 地質調査所月報, vol. 10, p. 701–704.
- 清島信之(1960)高知県別役鉱山について. 地質調査所月報, vol. 11, p. 673-678.
- 神戸信和(1968)20万分の1地質図幅「剣山」.地質調査所.
- 高知県(1960)高知県地質鉱産図. 高知県水産商工部商工課.
- 高知県(1961)高知県地質鉱産図説明書.高知県水産商工部商工課,129 p.
- 高知県(1982)土地分類基本調査「馬路」(5万分の1). 高知 県企画部, 21 p.
- 高知県(1991)高知県温泉水脈推定基礎地質図. 高知県保健環 境部衛生課.
- Kodama, K., Taira, A., Okamura, M. and Saito, Y. (1983) Paleomagnetism of the Shimanto Belt in Shikoku, Southwest Japan. In Hashimoto, M. and Uyeda, S., eds., Accretion Tectonics in the Circum-Pacific Regions. Terra Sci. Pub. Com. (Terrapub), Tokyo, p. 231–241.
- 国土庁土地局 (1991) 20 万分の1土地保全図 (自然環境条件図). 高知県農林水産部.
- 小池一之・町田 洋(2001)日本の海成段丘アトラス.東京大 学出版会,122 p.及び 3CD-ROM.

- 公文富士夫(1976)徳島県南部の四万十累層群白亜系の層位学 的・堆積学的研究.総合研究「四万十地向斜に関する総合 的研究」研究連絡誌, no. 3, p. 22–26.
- 公文富士夫 (1981) 徳島県南部の四万十累帯白亜系. 地質学雑誌, vol. 87, p. 277–295.
- 公文富士夫(1992)四国東部の四万十累帯白亜系の砂岩におけ る斜長石粒子の曹長石化.地質学論集, no. 38, p. 281–290.
- 公文富士夫・井内美郎(1973)室戸半島東南部の四万十帯.総 合研究「四万十地向斜に関する総合的研究」研究連絡誌, no. 2, p. 49–52.
- 公文富士夫・井内美朗(1976)室戸半島北東部,徳島県宍喰町 周辺の四万十累層群古第三系.地質学雑誌,vol.82,p. 383-394.
- 公文富士夫・別所孝範・バリーローザー(2012)紀伊半島 四万十累帯の粗粒砕屑岩組成と後背地の変遷.地学団体研 究会専報, no. 59, p. 193-216.
- 馬渕映美(1995)四国四万十帯大山岬層中の変成岩礫の起源. 島根大学地質学研究報告, vol. 14, p. 21–35.
- 前杢英明(1988) 室戸半島の完新世地殻変動. 地理学評論, vol. 61, p. 747–769.
- Matsuda, T. and Isozaki, Y. (1991) Well-documented travel history of Mesozoic pelagic chert in Japan: from remote ocean to subduction zone. *Tectonics*, vol. 10, p. 475–499.
- Matsumura, M., Hashimoto, Y., Kimura, G., Ohmori-Ikehara, K., Enjohji, M. and Ikesawa, E. (2003) Depth of oceanic-crust underplating in a subduction zone: inferences from fluidinclusion analyses of crack-seal veins. *Geology*, vol. 31, p. 1005–1008.
- 松岡 篤・山北 聡・榊原正幸・久田健一郎(1998)付加体地 質の観点に立った秩父累帯のユニット区分と四国西部の地 質. 地質学雑誌, vol.104, p. 634-653.
- Mori, K. and Taguchi, K. (1988) Examination of the low-grade metamorphism in the Shimanto Belt by vitrinite reflectance. *Modern Geol.* vol. 12, p. 325–339.
- 三橋俊介(2016MS)四国東部宍喰地域における四万十帯付加 体の古地温構造. 筑波大学 修士論文, 52p.
- 溝口秀治・君波和雄・今岡照喜・亀井淳司(2009)室戸岬地域 における中新世の海溝近傍火成活動.地質学雑誌, vol. 115, p. 17–30.
- 中川衷三 (1976) 四国東端の四万十帯白亜系. 総合研究「四万十 地向斜に関する総合的研究」研究連絡誌, no. 3, p. 15–17.
- 中川衷三・中世古幸次郎(1977)四万十層群の放散虫化石(予報)一四国東部の四万十帯の研究 その3-. 徳島大学学 芸紀要(自然), vol. 27, p. 17–25.
- 中川衷三・梅岡俶郎・増田英俊・大久保 融(1977)四国東部 の四万十帯中生界南半の岩相と構造—四国東部の四万十帯 の研究 その2—. 徳島大学学芸紀要(自然), vol. 27, p. 9–15.
- 中川衷三・中世古幸次郎・川口輝与隆・吉村隆三(1980)四国 東端の四万十帯上部ユラ系及び白亜系放散虫化石の概要. 徳島大学学芸紀要(自然科学), vol. 31, p. 1–27.
- 中川衷三・中世古幸次郎・福井 健・森 健太郎・佐野伸介・

坂本和裕(1984)四国東部四万十帯北帯に関する2・3の 新資料(四国東部四万十帯の研究―第5報―). 徳島大学 学芸紀要(自然科学), vol.35, p.19–24.

- 中村謙太郎・藤永公一郎・加藤泰浩(2000)四万十帯北帯に分 布する現地性玄武岩の希土類元素組成とその起源に関する 示唆. 岩鉱, vol. 29, p. 175–190.
- Nakamura, Y., Hara, H. and Kagi, H. (2019) Natural and experimental structural evolution of dispersed organic matter in mudstones: The Shimanto accretionary complex, southwest Japan. *Island Arc*, vol. 28, e12318, doi 10.1111/iar.12318.
- 中西一郎(2013)「谷陵記」に書かれなかった高知県野根の宝 永地震被害. 第31回歴史地震研究会予稿集, p.8.
- Nara, M. and Ikari, Y. (2011) "Deep-sea bivalvian highways" : an ethological interpretation of branched *Protovirgularia* of the Palaeogene Muroto-Hanto Group, southwestern Japan. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, vol. 305, p. 250–255.
- Nigrini, C. and Sanfilippo, A. (2001) Cenozoic Radiolarian Stratigraphy for Low and Middle Latitudes. ODP Technical Note 27.
- Nigrini, C., Sanfilippo, A. and Moore, T.J.Jr. (2005) Cenozoic radiolarian biostratigraphy: a magnetobiostratigraphic chronology of Cenozoic sequences from ODP sites 1218, 1219, and 1220, equatorial Pacific. *In* Ailson, P.A., Lyle, M. and Firth, J.V., eds., *Proc. ODP Sci. Res.*, vol. 199, p. 1–76.
- 日本地質学会構造地質部会編(2012)日本の地質構造 100 選. 朝倉書店, 171 p.
- 日本地質学会編(2016)6.四万十带.四国地方(日本地方地 質誌7),朝倉書店, p.204-248.
- 日本地質学会訳編(2001)国際層序ガイド層序区分・用語法・ 手順へのガイド.共立出版,238 p.
- 日本規格協会(2012a) JIS A 0204:地質図一記号, 色, 模様, 用語及び判例表示. 126 p.
- 日本規格協会(2012b) JIS A 0205:ベクトル数値地質図―品質 要求事項及び主題属性コード.190 p.
- 小川勇二郎・谷口英嗣(1989) 微量元素組成と産状からみた本 邦の付加体および構造帯中の玄武岩類の起源とエンプレイ スメントのプロセス.地学雑誌, vol. 98, p. 118–132.
- Ogg, J.G., Ogg, G. and Gradstein, F.M. (2016) A Concise Geologic Time Scale: 2016. Elsevier, 240 p.
- Ohmori, K., Taira, A., Tokuyama, H., Sakaguchi, A., Okamura, M. and Aihara, A. (1997) Paleothermal structure of the Shimanto accretionary prism, Shikoku, Japan: role of an out-of-sequence thrust. *Geology*, vol. 25, p. 327–330.
- 岡田尚武・岡村 真(1980)高知県四万十帯から発見された石 灰質ナンノ化石. 平 朝彦・田代正之編,四万十帯の地質 学と古生物学(甲藤次郎教授還暦記念論文集),林野弘済 会高知支部,高知, p.147–152.
- Onishi, C. T. and Kimura, G. (1995) Change in fabric of melange in the Shimanto Belt, Japan: Change in relative convergence? *Tectonics*, vol. 14, p. 1273–1289.
- Raymond, L.A. (1984) Classification of melanges. *In* Raymond, L.A. ed., *Melanges: Their Nature, Origin and Significance*, Geol. Soc.

Amer., Spec. Paper, no. 198, p. 7-2.

- Sanfilippo, A. and Nigrini, C. (1998) Code number for Cenozoic low latitude radiolarian biostratigraphy zones and GPST conversion tables. *Marine Micropaleont.*, vol. 33, p. 109–156.
- Sanfilippo, A., Burkle, L.H., Martini, E. and Riedel, W.R. (1985) Cenozoic radiolarian. *In* Bolli, H.M., Saunder, J.B. and Perch-Nielsen, K., eds., *Plankton Stratigraphy*, Cambridge Univ. Press, p. 631–712.
- 笹原克夫(2016)高知県北川村平鍋周辺の深層崩壊跡地と山頂 緩斜面の分布.砂防学会誌, vol. 69, p. 26–37.
- 笹原克夫・石塚忠範・加藤仁志・桜井 亘・梶 昭仁 (2011)
 平成 23 年台風 6 号により高知県東部で発生した深層崩壊.
 砂防学会誌, vol. 64, p. 39–45.
- 笹原克夫・桜井 亘・加藤仁志・島田 徹・小野尚哉 (2012) LiDAR による深層崩壊発生斜面の地形学的検討 一平成 23 年台風 6 号により高知県東部に群発した深層崩壊の事 例解析. 深層崩壊の実態,予測,対応. 京都大学防災研究 所, p. 1–10.
- Shibata, T., Orihashi, Y., Kimura, G. and Hashimoto, Y. (2008) Underplating of mélange evidenced by the depositional ages: U– Pb dating of zircons from the Shimanto accretionary complex, southwest Japan. *Island Arc*, vol. 17, p. 376–393.
- 四国地方土木地質図編纂委員会(1998)四国地方土木地質図及 び解説書.(財)国土開発技術研究センター,859 p.
- Seton, M., Flament, N., Whittaker, J., Müller, R.D., Gurnis, M. and Bower, D.J. (2015) Ridge subduction sparked reorganization of the Pacific plate-mantle system 60–50 million years ago. *Geophy. Res. Lett.*, vol. 42, doi:10.1002/2015GL063057.
- Sugisaki, R., Suzuki, T., Kanmera, K., Sakai, T. and Sano, H. (1979) Chemical compositions of green rocks in the Shimanto Belt, Southwest Japan. *Jour. Geol. Soc. Japan*, vol. 85, p. 455–466.
- 須内寿男・宮地修一・水野隆之・土居範昭(2011)ダム貯水池 に影響を与えた大規模崩壊に伴う土石流(速報).日本応 用地質学会中国四国支部研究発表会発表論文集, p. 77-80.
- 須鎗和巳(1984)四国東部四万十帯の放散虫混合群集. 徳島大 学教養部紀要(自然科学), vol. 17, p. 31–58.
- 須鎗和巳(1986)四国東部の四万十帯北帯の再検討.徳島大学 教養部紀要(自然科学), vol. 19, p. 45–54.
- 須鎗和巳・山崎哲司(1987)徳島県四万十帯北帯と南帯の境界. 徳島大学教養部紀要(自然科学), vol. 20, p. 34-46.
- 須鎗和巳・山崎哲司(1988)四国の四万十帯南帯北縁部の微化 石年代. 徳島大学教養部紀要(自然科学), vol. 21, p. 107– 133.
- 須鎗和巳・坂東祐司・小畠郁生(1967)徳島県牟岐町の四万十 帯より白亜紀アンモナイトの発見.地質学雑誌, vol. 73, p. 535–536.
- 鈴木博之・福田修武(2012)紀伊半島四万十付加体の古第三紀 放散虫化石. 地学団体研究会専報, no. 59, p. 237–247.
- 鈴木博之・中屋志津男(2012)紀伊半島における四万十付加体 の発達史. 地学団体研究会専報, no. 59, p. 273–282.
- 鈴木達夫(1930)7万5千分の1地質図幅「室戸」及び同地質 説明書.地質調査所,20p.

- 鈴木達夫(1931)7万5千分の1地質図幅「甲浦」及び同地質 説明書.地質調査所,20p.
- 平 朝彦・田代正之・岡村 真・甲藤次郎(1980a)高知県
 四万十帯の地質とその起源.平 朝彦・田代正之編,
 四万十帯の地質学と古生物学(甲藤次郎教授還暦記念論文集),林野弘済会高知支部,高知, p. 249–264.
- 平 朝彦・岡村 真・甲藤次郎・田代正之・斎藤靖二・小玉一 人・橋本光男・千葉とき子・青木隆弘(1980b)高知県 四万十帯北帯(白亜系)における"メランジュ"の岩相と 時代.平 朝彦・田代正之編,四万十帯の地質学と古生物 学(甲藤次郎教授還暦記念論文集),林野弘済会高知支部, 高知, p. 179-214.
- Taira, A., Katto, J., Tashiro, M., Okamura, M. and Kodama, K. (1988) The Shimanto Belt in Shikoku, Japan –Evolution of Cretaceous to Miocene accretionary prism. *Modern Geol.*, vol. 12, p. 5–46.
- 田代正之(1980)高知県の四万十帯の二枚貝化石とその生層位. 平 朝彦・田代正之編,四万十帯の地質学と古生物学(甲 藤次郎教授還暦記念論文集),林野弘済会高知支部,高知,p. 249-264.
- 徳島県(1972)徳島県の地質及び15万分の1徳島県地質図. 徳島県農林水産部農林企画課.
- 東明省三(1958)徳島県の四万十帯より産出した化石. 地質学 雑誌, vol. 64, p. 95–96.
- 辻野泰之・石田啓祐・和田秀実・平山正則(2010)四国東部・ 徳島県牟岐町の四万十帯より新たに発見された後期白亜紀 アンモナイト.地質学雑誌, vol. 116, p. 680-685.
- 鶴田聖子・長谷川修一・村田明広(1995)イライト結晶度から みた安芸構造線―四国東部,魚梁瀬 – 久尾地域―.日本地 質学会第102年学術大会講演要旨.p.219.
- Tsutsumi, Y., Miyashita, A., Terada, K. and Hidaka, H. (2009) SHRIMP U–Pb dating of detrital zircons from the Sanbagawa Belt, Kanto Mountains, Japan: need to revise the framework of the belt. *Jour. Mineral. Petrol. Sci.* vol. 104, p. 12–24.
- 植木岳雪(2018a)四国南東部,安田川の完新世段丘. 日本地 理学会発表要旨集, no. 93, p. 97.
- 植木岳雪(2018b)四国南東部, 奈半利川の段丘. 日本第四紀 学会講演要旨集, no. 48, p. 5.
- 植木岳雪(2018c)徳島県南部,海部川支流のせき止め湖堆積物. 日本地球惑星科学連合 2018 年大会予稿集, HDS11-09.
- Ujiie, K., Yamaguchi, A., Kimura, G. and Toh, S. (2007a) Fluidization of granular material in a subduction thrust at seismogenic depths. *Earth Planet. Sci. Lett.*, vol. 259, p. 307– 318.
- Ujiie, K., Yamaguchi, A., Sakaguchi, A. and Toh, S. (2007b) Pseudotachylytes in an ancient accretionary complex and implications for melt lubrication during subduction zone earthquakes. *Jour. Str. Geol.*, vol. 29, p. 599–613.
- Ujiie, K., Kameyama, M. and Yamaguchi, A. (2010) Geological record of thermal pressurization and earthquake instability of subduction thrusts. *Tectonophysics*, vol. 485, p. 260–268.
- Wakita, K. (1988) Origin of chaotically mixed rock bodies in the Early Jurassic to Early Cretaceous sedimentary complex of the

Mino Terrane, central Japan. Bull. Geol. Surv. Japan, vol. 39, p. 675–742.

- 脇田浩二(1989)付加テクトニクスと用語.構造地質(構造地 質研究会誌), no. 34, p. 3-8.
- Wakita, K. (2015) OPS mélange: a new term for mélanges of convergent margins of the world. *Int. Geol. Rev.*, vol. 57, p. 529–539.
- Wakita, K. and Metcalfe, I. (2005) Ocean Plate Stratigraphy in East and Southeast Asia. *Jour. Asian Earth Sci.*, vol. 24, p. 679–702.
- 脇田浩二・宮崎一博・利光誠一・横山俊治・中川昌治(2007) 伊野地域の地質.地域地質研究報告(5万分の1地質図幅). 産総研 地質調査総合センター,140 p.
- 渡辺武男·沢村武雄·宮久三千年(1973)日本地方鉱床誌,四 国地方.朝倉書店,426 p.
- Weseel, P. and Smith, W.H.F. (1995) New version of Generic Mapping Tools released. *EOS Trans. AGU*, vol. 76, p. 329.
- 山口飛鳥・柴田伊廣・氏家恒太郎・木村 学(2009)四万十帯 牟岐メランジュにみる沈み込み帯地震発生帯の変形と流体 移動.地質学雑誌, vol. 115, 補遺, p. 21–36.
- 山崎哲司・横田佳憲・奥村 清(1993)高知県安芸市東部から

産する白亜紀放散虫化石一四万十帯北帯と南帯の境界に関 して一. 大阪微化石研究会誌,特別号, no.9, p. 215–223.

- 山崎哲司・横田佳憲・奥村 清(1995)高知県安芸市下山の海 岸部から得られた放散虫化石. 愛媛大学教育学部紀要(自 然科学), vol. 15, p. 31–36.
- 柳井修一(1983)四万十地向斜の古地理一四国東部地域を例と して. 地質学雑誌. vol. 89, p. 575–593.
- Yanai, S. (1984) Paleogeography of the Cretaceous Shimanto geosyncline, in respect of forearc tectogenesis in active continental margin. *Jour. Fac. Sci. Univ. Tokyo, Sec.* II, vol., 21, p. 1–37.
- 安岡大六(1966)馬路村史.馬路村, 380 p.
- 江原眞伍 (1928) 四國における上部白亜紀層の分布と構造線に 就きて. 地球, vol., 9, p. 181–190.
- 吉倉紳一・板谷徹丸・岡村 真(1991)四国四万十帯大山岬層 産結晶片岩礫の K-Ar 年代. 日本地質学会第 98 年学術大 会講演要旨, p. 434.
- 吉倉紳一・鈴木堯士・真部由華・Gabites, J. (1996) 四万十帯 大山岬層産珪長質火成岩礫のジルコン U-Pb 年代. 日本地 質学会西日本支部会報, no. 109, p. 5.

QUADRANGLE SERIES, 1: 50,000 Kochi (13) No.65

Geology of the Umaji District

By

Hidetoshi HARA*, Takeyuki UEKI** and Kousuke HARA***+

(Written in 2019)

(ABSTRACT)

Outline

The Umaji distract is located on the border between Kochi and Tokushima prefectures in the eastern part of Shikoku Island, Southwest Japan, and occupies the southeastern Shikoku Mountains. The geology of this district is composed mainly of the accretionary complex in the Shimanto Belt, which is called the Shimanto accretionary prism or Shimanto accretionary complex, and accompanied with minor Quaternary sediments (Figs. 1 and 2). The Shimanto accretionary complex is characterized by a coherent turbidite or a chaotic mélange formed during Cretaceous and Paleogene. The Quaternary sediments are distributed along major rivers and consists of river terrace, landslide, valley floor and flood plain deposits.

Cretaceous Shimanto accretionary complex

The Cretaceous Shimanto accretionary complex in the Umaji district consists of four tectono-stratigraphic units (Taniyama, Hiwasa, Mugi, and Shakagaue units) from north to south. The Taniyama Unit is characterized by a mélange that contains blocks of sandstone, basaltic rocks, chert and vari-colored mudstone in an argillaceous matrix, as well as broken beds of sandstone and mudstone. This unit was thrust over the Hiwasa Unit by the Fukase Fault. The Hiwasa Unit is composed of coherent and rhythmic turbidite that contains sandstone, interbedded sandstone and mudstone, and minor amounts of felsic tuff. The Mugi Unit comprises mélange that contains blocks of sandstone, basaltic rocks, chert, and vari-colored mudstone in an argillaceous matrix. The structurally lowest part of the Mugi Unit is composed of phyllitic mudstone with minor sandstone. The Shakagaue Unit comprises mudstone, broken beds of sandstone and mudstone, and minor felsic tuff, representing a dismembered turbiditic sequence. It also lacks clasts of oceanic crust materials. Based on the radiolarian age of mudstone and detrital zircon U–Pb age, the depositional age of the Taniyama Unit ranges from Coniacian to earliest Campanian, and the deposition of the Hiwasa Unit dates to the late Campanian. The Mugi and Shakagaue units have the same depositional age, ranging from late Campanian to Danian.

Paleogene Shimanto accretionary complex

The Paleogene Shimanto accretionary complex in the district is composed of three tectono-stratigraphic units (Higashigo, Kaifu and Naharigawa units) from north to south. The Higashigo Unit is composed of broken interbedded sandstone with sandstone, mudstone and minor felsic tuff. The depositional age of this unit is middle Eocene, as estimated by the radiolarian age of mudstone and the U–Pb age of felsic tuff. The Kaifu Unit consists of thick bedded sandstone with conglomerate, interbedded sandstone and mudstone, broken beds of sandstone and mudstone, mudstone, and vari-colored mudstone. The depositional age of the Kaifu Unit is Eocene, as inferred from the radiolarian age of mudstone. The Naharigawa Unit comprises massive and bedded sandstone, interbedded sandstone and mudstone, and minor broken beds of sandstone and mudstone. The depositional age of this unit is late Eocene, based on the radiolarian age of mudstone. The detrital zircon U–Pb ages of the Paleogene Shimanto accretionary complex are clearly older than the radiolarian ages, indicating that the U–Pb ages are not suitable to determine the depositional age.

^{*} Research Institute of Geology and Geoinformation.

^{**} Chiba Institute of Science

^{***} Research Assistant, Research Institute of Geology and Geoinformation

⁺ Present address: Kunimine Industries CO., Ltd

Geological structure in the Shimanto accretionary complex

Many lineaments with E–W or NE–SW trends ahave developed in this area; there run parallel to the strike of the strata and the boundary faults between tectono-stratigraphic units. Each of these boundary faults is interpreted as either an in-sequence or out-of-sequence thrusts, and these faults are named the Aki Tectonic Line, and the Fukase, Inubo, Kuki, Shiofuka, Nasa, Ikumi, Sugenoue faults. In addition, the Hiyadani, Higashidanigawa, Yasuda and Umaji faults, which show a NNE–SSW trend, have also developed in this area and cut the above thrusts. The Yasuda Fault has been identified as a possibly active fault. In the Naharigawa Unit, strikes of strata make the transition from WNW–ESE and E–W in the eastern area to NE–SW in the western area; this shift was caused by the Muroto Flexure during the middle Miocene.

Quaternary sediments

The Quaternary sediments consist of lower and alluvial river terrace, landslide, valley floor and flood plain deposits. The lower and alluvial river terrace deposits, formed in the late Pleistocene and Holocene, are distributed along the Yasuda, Nahari, Ogawa, and None rivers. Landslide deposits have been observed in the Shima, Izumi, and Hiranabe areas. Valley floor deposits composed of many gravels are distributed along the None River and its tributaries. Flood plain deposits are characterized by sand and gravel are distributed along the major rivers in the area

Economic and environmental geology

Several copper mines have been reported in the chert and basaltic rocks succession within the Mugi Unit of the Cretaceous Shimanto accretionary complex. A manganese mine has been reported in the chert within the Mugi Unit. However, all mines have been exhausted. The district contains two active mineral springs. Heavy rain and thphoons frequently cause many landslides and leave landslides scars in the deep mountain area.

Fig. 1 Geological map of the Umaji district

Fig. 2 Geological summary of the Umaji district

To: Tochidani Unit. Hn: Hinotani Unit. Os: Osodani Unit, Tn: Taniyama Unit. Hw: Hiwasa Unit. Mg: Mug: Unit, M: Mixed rock (mélange) . Phy: Phyllitic mudstone. Sh: Shakagaue Unit. Hg: Higashigo Unit. Kf: Kaifu Unit. Nh: Naharigawa Unit.

執筆分担

第1章	地形	原	英俊	・植オ	「岳雪
第2章	地質概説	原	英俊	・植オ	「岳雪
第3章	四万十帯白亜系付加コンプレックス	原	英俊	原	康祐
第4章	四万十帯古第三系付加コンプレックス	原	英俊	原	康祐
第5章	四万十帯付加コンプレックスの地質構造			原	英俊
第6章	第四系			植才	「岳雪
第7章	応用地質	原	英俊	・植オ	「岳雪

文献引用例

原 英俊・原 康祐・植木岳雪(2020)馬路地域の地質.地域地質研究報告(5万分の1地質図幅). 産総研地質調査総合センター, 91 p

章単位での引用例

原 英俊・植木岳雪(2020)馬路地域の地質,第1章 地形.地域地質研究報告(5万分の1地質図幅). 産総研地質調査総合センター, p.1-4.

Bibliographic reference

- Hara, H., Ueki, T. and Hara, K. (2020) Geology of the Umaji District. Quadrangle Series, 1:50,000,Geological Survey of Japan, AIST, 91 p. (in Japanese with English abstract, 4 p.).
- Bibliographic reference of each chapter

Hara, H. and Hara, K. (2020) Geology of the Umaji District, Chapter 3, Cretaceous Shimanto accretionary complex. Quadrangle Series, 1:50,000, Geological Survey of Japan, AIST, p. 12–39 (in Japanese).

地域地質研究報告(5万分の1地質図幅) 馬路地域の地質 令和2年2月28日発行 国立研究開発法人 産業技術総合研究所 地質調査総合センター Geology of the Umaji District. Quadrangle Series, 1:50,000 Published on February 28, 2020

Geological Survey of Japan, AIST

AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, 305-8567, JAPAN

〒305-8567 茨城県つくば市東1-1-1 中央第7

印刷所 株式会社 アイネクスト

Inext Co., Ltd

©2020 Geological Survey of Japan, AIST

裏表紙写真説明:魚梁瀬ダム展望台からみた魚梁瀬貯水池

Back Cover Photo: Front view of the Yanase Reservoir from an observatory of the Yanase Dam

Quadrangle Series, 1:50,000 Kochi (13) No.65 NI-53-22-15

Geology of the Umaji District

by Hidetoshi HARA, Takeyuki UEKI and Kousuke HARA

2020 Geological Survey of Japan, AIST